Câu hỏi:

19/11/2025 38 Lưu

Yếu tố nào sau đây xác định một mặt phẳng duy nhất?

A. Ba điểm phân biệt.       
B. Hai đường thẳng cắt nhau.       
C. Bốn điểm phân biệt.  

D. Một điểm và một đường thẳng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Yếu tố xác định một mặt phẳng duy nhất là hai đường thẳng cắt nhau.

Xét phương án A: Trường hợp ba điểm thẳng hàng không xác định được một mặt phẳng.

Xét phương án D: Trường hợp điểm nằm trên đường thẳng không xác định được một mặt phẳng.

Xét phương án C: Trường hợp bốn điểm không đồng phẳng không xác định được một mặt phẳng

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}.\)  
B. \(y = \frac{{x + 1}}{{x - 2}}.\)            
C. \(y = \frac{1}{{{x^2} - 4}}.\)         
D. \(y = \frac{{\sqrt x }}{{x - 2}}.\)

Lời giải

Đáp án đúng là: A

Xét hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}.\)

Điều kiện: \(x + 2 \ne 0 \Leftrightarrow x \ne - 2.\)

Tập xác định của hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\)\(D = \mathbb{R}\backslash \left\{ { - 2} \right\}.\)

Hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) là hàm phân thức nên nó liên tục trên tập xác định \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\) chứa \(x = 2.\)

Như vậy, hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) cũng sẽ liên tục tại \(x = 2.\)

Lời giải

Đáp án đúng là: C

Cỡ mẫu \(n = 3 + 12 + 15 + 24 + 2 = 56.\)

Gọi \({x_1},...,{x_{56}}\) là thời gian truy cập Internet mỗi buổi tối của 56 học sinh và giả sử dãy này đã được sắp xếp theo thứ tự không giảm.

Khi đó: \({x_1},...,{x_3}\) thuộc nhóm \[\left[ {9,5;12,5} \right);\]

            \({x_4},...,{x_{15}}\) thuộc nhóm \(\left[ {12,5;15,5} \right);\)

            \({x_{16}},...,{x_{30}}\) thuộc nhóm \(\left[ {15,5;18,5} \right);\)

            \({x_{31}},...,{x_{54}}\) thuộc nhóm \(\left[ {18,5;21,5} \right);\)

            \({x_{55}},\,\,{x_{56}}\) thuộc nhóm \(\left[ {21,5;24,5} \right).\)

Ta có tứ phân vị thứ hai \({Q_2}\) chính là trung vị \({M_e}\) và trung vị là \(\frac{{{x_{28}} + {x_{29}}}}{2}.\)

\({x_{28}},\,\,{x_{29}}\) thuộc nhóm \(\left[ {15,5;18,5} \right)\) nên nhóm này chứa trung vị.

Do đó, \(p = 3;\,\,{a_3} = 15,5;\,\,{m_3} = 15;\,\,{m_1} + {m_2} = 3 + 12 = 15;\,\,{a_4} - {a_3} = 18,5 - 15,5 = 3,\) ta có:

\({M_e} = 15,5 + \frac{{\frac{{56}}{2} - 15}}{{15}}.3 = 18,1.\)

Vậy tứ phân vị thứ hai của mẫu số liệu ghép nhóm đã cho là \(18,1.\)