Câu hỏi:

19/11/2025 8 Lưu

Cho tứ diện \(ABCD\). Gọi \(M,\,\,N\) lần lượt là trung điểm của \(BC,\,\,CD.\) Đường thẳng \(BD\) song song với mặt phẳng nào dưới đây?

A. \(\left( {AMN} \right).\)        
B. \(\left( {ABC} \right).\)    
C. \(\left( {ABD} \right).\)    
D. \(\left( {CMN} \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Media VietJack

Xét \(\Delta BCD\) có: \(M,\,\,N\) lần lượt là trung điểm của \(BC,\,\,CD.\)

Suy ra \(MN\) là đường trung bình của \(\Delta BCD.\)

\( \Rightarrow BD{\rm{//}}MN.\)

Mặt khác: \(MN \subset \left( {AMN} \right),\,\,BD \not\subset \left( {AMN} \right).\)

\( \Rightarrow BD{\rm{//}}\left( {AMN} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

a) Vì \(ABCD\) là hình bình hành tâm \(O\) nên \(O\) là trung điểm của \(AC,\,\,BD.\)

Xét \(\Delta SBD\) có: \(O,\,\,M\) lần lượt là trung điểm của \(BD,\,\,SB.\)

Suy ra \(OM\) là đường trung bình của \(\Delta SBD.\)

\( \Rightarrow OM//SD.\)

Hơn nữa \(SD \subset \left( {SCD} \right);\,\,OM\,\, \not\subset \left( {SCD} \right).\)

\( \Rightarrow OM{\rm{//}}\left( {SCD} \right).\)

b) Trong \(\left( {ABCD} \right)\) gọi \(K = AN \cap CD.\)

\[ \Rightarrow K \in AN;\,\,K \in CD.\]

\(AN \subset \left( {AMN} \right)\)\(CD \subset \left( {SCD} \right).\)

\( \Rightarrow K \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (1)

\(N\) là điểm trên cạnh \(BC\) sao cho \(BN = 2CN\) nên \(MN\) không song song với \(SC.\) Trong \(\left( {SBC} \right)\) gọi \[H = MN \cap SC.\]

\( \Rightarrow H \in MN;\,\,H \in SC.\)

\(MN \subset \left( {AMN} \right)\)\(SC \subset \left( {SCD} \right).\)

\( \Rightarrow H \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (2)

Từ (1) và (2) ta có \(HK = \left( {SCD} \right) \cap \left( {AMN} \right).\)

Câu 2

A. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \sin \alpha + \frac{1}{2}.\)  
B. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \frac{1}{2}\sin \alpha + \frac{{\sqrt 3 }}{2}\cos \alpha .\)
C. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \frac{1}{2}\sin \alpha - \frac{{\sqrt 3 }}{2}\cos \alpha .\)           
D. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2}\sin \alpha + \frac{1}{2}\cos \alpha .\)

Lời giải

Đáp án đúng là: D

Ta có: \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha \sin \frac{\pi }{6} = \frac{{\sqrt 3 }}{2}\sin \alpha + \frac{1}{2}\cos \alpha .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP