Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M,\,\,N,\,\,P\) theo thứ tự lần lượt là trung điểm của \(SA,\,\,SB,\,\,SD.\) Khẳng định nào sau đây sai?
Quảng cáo
Trả lời:
Đáp án đúng là: B

Ta có: \(P\) là trung điểm của \(SD.\)
\( \Rightarrow P \in SD\) mà \(SD \subset \left( {SCD} \right).\)
\( \Rightarrow P \in \left( {MNP} \right) \cap \left( {SCD} \right).\)
Vậy hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {SCD} \right)\) không song song với nhau.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Xét hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}.\)
Điều kiện: \(x + 2 \ne 0 \Leftrightarrow x \ne - 2.\)
Tập xác định của hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) là \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}.\)
Hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) là hàm phân thức nên nó liên tục trên tập xác định \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\) chứa \(x = 2.\)
Như vậy, hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) cũng sẽ liên tục tại \(x = 2.\)
Câu 2
Lời giải
Đáp án đúng là: C
Cỡ mẫu \(n = 3 + 12 + 15 + 24 + 2 = 56.\)
Gọi \({x_1},...,{x_{56}}\) là thời gian truy cập Internet mỗi buổi tối của 56 học sinh và giả sử dãy này đã được sắp xếp theo thứ tự không giảm.
Khi đó: \({x_1},...,{x_3}\) thuộc nhóm \[\left[ {9,5;12,5} \right);\]
\({x_4},...,{x_{15}}\) thuộc nhóm \(\left[ {12,5;15,5} \right);\)
\({x_{16}},...,{x_{30}}\) thuộc nhóm \(\left[ {15,5;18,5} \right);\)
\({x_{31}},...,{x_{54}}\) thuộc nhóm \(\left[ {18,5;21,5} \right);\)
\({x_{55}},\,\,{x_{56}}\) thuộc nhóm \(\left[ {21,5;24,5} \right).\)
Ta có tứ phân vị thứ hai \({Q_2}\) chính là trung vị \({M_e}\) và trung vị là \(\frac{{{x_{28}} + {x_{29}}}}{2}.\)
Vì \({x_{28}},\,\,{x_{29}}\) thuộc nhóm \(\left[ {15,5;18,5} \right)\) nên nhóm này chứa trung vị.
Do đó, \(p = 3;\,\,{a_3} = 15,5;\,\,{m_3} = 15;\,\,{m_1} + {m_2} = 3 + 12 = 15;\,\,{a_4} - {a_3} = 18,5 - 15,5 = 3,\) ta có:
\({M_e} = 15,5 + \frac{{\frac{{56}}{2} - 15}}{{15}}.3 = 18,1.\)
Vậy tứ phân vị thứ hai của mẫu số liệu ghép nhóm đã cho là \(18,1.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.