Câu hỏi:

19/11/2025 55 Lưu

Trong các mệnh đề sau mệnh đề nào sai?

A. Phép chiếu song song biến đường thẳng thành đường thẳng, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng.
B. Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song.
C. Phép chiếu song song biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không thay đổi thứ tự của ba điểm đó.
D. Phép chiếu song song không làm thay đổi tỉ số độ dài của hai đoạn thẳng nằm trên hai đường thẳng song song hoặc cùng nằm trên một đường thẳng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Phương án B mang nội dung sai vì phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}.\)  
B. \(y = \frac{{x + 1}}{{x - 2}}.\)            
C. \(y = \frac{1}{{{x^2} - 4}}.\)         
D. \(y = \frac{{\sqrt x }}{{x - 2}}.\)

Lời giải

Đáp án đúng là: A

Xét hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}.\)

Điều kiện: \(x + 2 \ne 0 \Leftrightarrow x \ne - 2.\)

Tập xác định của hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\)\(D = \mathbb{R}\backslash \left\{ { - 2} \right\}.\)

Hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) là hàm phân thức nên nó liên tục trên tập xác định \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\) chứa \(x = 2.\)

Như vậy, hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) cũng sẽ liên tục tại \(x = 2.\)

Lời giải

Đáp án đúng là: C

Cỡ mẫu \(n = 3 + 12 + 15 + 24 + 2 = 56.\)

Gọi \({x_1},...,{x_{56}}\) là thời gian truy cập Internet mỗi buổi tối của 56 học sinh và giả sử dãy này đã được sắp xếp theo thứ tự không giảm.

Khi đó: \({x_1},...,{x_3}\) thuộc nhóm \[\left[ {9,5;12,5} \right);\]

            \({x_4},...,{x_{15}}\) thuộc nhóm \(\left[ {12,5;15,5} \right);\)

            \({x_{16}},...,{x_{30}}\) thuộc nhóm \(\left[ {15,5;18,5} \right);\)

            \({x_{31}},...,{x_{54}}\) thuộc nhóm \(\left[ {18,5;21,5} \right);\)

            \({x_{55}},\,\,{x_{56}}\) thuộc nhóm \(\left[ {21,5;24,5} \right).\)

Ta có tứ phân vị thứ hai \({Q_2}\) chính là trung vị \({M_e}\) và trung vị là \(\frac{{{x_{28}} + {x_{29}}}}{2}.\)

\({x_{28}},\,\,{x_{29}}\) thuộc nhóm \(\left[ {15,5;18,5} \right)\) nên nhóm này chứa trung vị.

Do đó, \(p = 3;\,\,{a_3} = 15,5;\,\,{m_3} = 15;\,\,{m_1} + {m_2} = 3 + 12 = 15;\,\,{a_4} - {a_3} = 18,5 - 15,5 = 3,\) ta có:

\({M_e} = 15,5 + \frac{{\frac{{56}}{2} - 15}}{{15}}.3 = 18,1.\)

Vậy tứ phân vị thứ hai của mẫu số liệu ghép nhóm đã cho là \(18,1.\)