Câu hỏi:

19/11/2025 8 Lưu

Cho tam giác \(ABC\) vuông tại \(A\)\(AB = a,\,AC = a\sqrt 3 \)\(AM\) là đường trung tuyến. Tính tích vô hướng \(\overrightarrow {BA} .\overrightarrow {AM} \)

A. \(\frac{{{a^2}}}{2}\);                                   
B. \({a^2}\);                       
C. \( - {a^2}\);            
D. \( - \frac{{{a^2}}}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Hướng dẫn giải  Đáp án đúng là: C (ảnh 1) 

Ta có tam giác\(ABC\) vuông tại \(A\) và có \(AM\) là trung tuyến nên \(AM = \frac{{BC}}{2}\).\(AM = \frac{{BC}}{2} = \frac{{\sqrt {A{B^2} + A{C^2}} }}{2} = \frac{{\sqrt {{a^2} + 3{a^2}} }}{2} = a\).

Tam giác \(AMB\)\(AB = BM = AM = a\) nên là tam giác đều. Suy ra góc \(\widehat {MAB} = 60^\circ \).

Ta có \[\overrightarrow {BA} .\overrightarrow {AM} = - \overrightarrow {AB} .\overrightarrow {AM} = - \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AM} } \right|.cos{\rm{(}}\overrightarrow {AB} \;,\;\overrightarrow {AM} ) = - a.a.cos{\rm{60}}^\circ = - \frac{{{a^2}}}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(1\);                          
B. \(2\);                       
C. \(3\);                               
D. \(4\).

Lời giải

Đáp án đúng là: D

Để \(A \cup C = B\) thì tập hợp \(C\) bắt buộc phải chứa các phần tử \(1;\,\,3;\,\,4\).

Do đó các tập \(C\) có thể là \(\left\{ {1;3;4} \right\},\,\left\{ {1;3;4;0} \right\},\,\left\{ {1;3;4;2} \right\},\,\left\{ {1;3;4;0;2} \right\}\).

Câu 2

A. \(f\left( 1 \right) = 2\);                                                                           
B. Hàm số đồng biến trên \(\mathbb{R}\);
C. Hàm số nghịch biến trên \(\mathbb{R}\).
D. Tập xác định của hàm số là \(D = \left( {\frac{3}{2};\, + \infty } \right)\);          

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Xét đáp án A: ta có \(f\left( 1 \right) = 2.1 - 3 = - 1\) đáp án A sai.

Xét đáp án B: Xét hàm số \(f\left( x \right) = 2x - 3\). Hàm số có tập xác định là \(\mathbb{R}\).

Lấy \({x_1};\,{x_2}\) là hai số tuỳ ý sao cho \({x_1} < {x_2}\) ta có:

\({x_1} < {x_2} \Rightarrow 2{x_1} < 2{x_2} \Rightarrow 2{x_1} - 3 < 2{x_2} - 3 \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\)

Suy ra hàm số đồng biến trên \(\mathbb{R}\).

Suy ra đáp án B đúng, đáp án C sai.

Đáp án D sai vì tập xác định của hàm số là \(\mathbb{R}\).

Câu 3

A. \(x = 1\);                  
B. \(x = - 1\);              
C. \(x = - 2\);                                 
D. \(x = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(S = \frac{{abc}}{{2R}}\);                                              
B. \(S = \frac{{a + b + c}}{2}.R\);
C. \(S = \frac{{a + b + c}}{{2R}}\);                                                             
D. \(S = \frac{{abc}}{{4R}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(1\);                          
B. \(2\);                       
C. \(3\);                               
D. \(4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\left( {1;\,\,1} \right)\];                            
B. \(\left( {4;\,\, - 1} \right)\);                 
C. \(\left( {0;\,\,2} \right)\);                                                          
D. \(\left( {2;\,\, - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Hướng dẫn giải  Đáp án đúng là: A (ảnh 1)           
B. Hướng dẫn giải  Đáp án đúng là: A (ảnh 2)
C. Hướng dẫn giải  Đáp án đúng là: A (ảnh 3)            
D. Hướng dẫn giải  Đáp án đúng là: A (ảnh 4)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP