Câu hỏi:

20/11/2025 5 Lưu

Đo cân nặng của 1 lớp gồm \(40\) học sinh lớp 12B

Tứ phân vị thứ hai của mẫu số liệu ghép nhóm thuộc khoảng nào sau đây?

A.

\[\left[ {40;45} \right]\].

B.

\[\left[ {45;50} \right]\].

C.

\[\left[ {50;55} \right]\].

D.

\[\left[ {55;60} \right]\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Giả sử \({x_1};{x_2};...;{x_{40}}\) là cân nặng của 40 học sinh lớp 12B xếp theo thứ tự không giảm.

Có \({x_1};...;{x_4} \in \left[ {40;45} \right)\) ; \({x_5};...;{x_{17}} \in \left[ {45;50} \right)\) ; \({x_{18}};...;{x_{24}} \in \left[ {50;55} \right)\) ; \({x_{25}};...;{x_{29}} \in \left[ {55;60} \right)\) ;

\({x_{30}};...;{x_{35}} \in \left[ {60;65} \right)\) ; \({x_{36}};...;{x_{37}} \in \left[ {65;70} \right)\) ; \({x_{38}} \in \left[ {70;75} \right)\) ; \({x_{39}};{x_{40}} \in \left[ {75;80} \right)\).

Tứ phân vị thứ hai của mẫu số liệu là \(\frac{1}{2}\left( {{x_{20}} + {x_{21}}} \right)\) mà \({x_{20}};{x_{21}} \in \left[ {50;55} \right)\).

Khi đó ta có : \(n = 40;{u_m} = 50;C = 17;{n_m} = 7;{u_{m + 1}} = 55\).

Do đó \({Q_2} = 50 + \frac{{\frac{{40}}{2} - 17}}{7}.\left( {55 - 50} \right) \approx 52,14\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp  S . A B C D , đáy  A B C D  có  A D  và  B C  không song song với nhau. Lấy  I  thuộc  S A  sao cho  S A = 3 I A ,  J  thuộc  S C  và  M là trung điểm của  S B . (ảnh 1)

a) Gọi \(F\) là giao điểm của \(AD\) và \(BC\).

Có \(\left. \begin{array}{l}F \in AD \subset \left( {SAD} \right)\\F \in BC \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow F \in \left( {SAD} \right) \cap \left( {SBC} \right)\).

Mà \(S \in \left( {SAD} \right) \cap \left( {SBC} \right)\). Do đó \(\left( {SAD} \right) \cap \left( {SBC} \right) = SF\).

b) Trong mặt phẳng \(\left( {SAB} \right)\), kẻ \(IM \cap AB = E\).

Có \(E \in IM \subset \left( {IJM} \right)\). Suy ra \(E = AB \cap \left( {IJM} \right)\).

Lời giải

a) \(M = \tan 10^\circ \cdot \tan 20^\circ \cdot \tan 30^\circ \cdot \tan 40^\circ \cdot \tan 50^\circ \cdot \tan 60^\circ \cdot \tan 70^\circ \cdot \tan 80^\circ \)

\[M = \left( {\tan 10^\circ \cdot \tan 80^\circ } \right) \cdot \left( {\tan 20^\circ \cdot \tan 70^\circ } \right) \cdot \left( {\tan 30^\circ \cdot \tan 60^\circ } \right) \cdot \left( {\tan 40^\circ \cdot \tan 50^\circ } \right)\]

\[M = \left( {\tan 10^\circ \cdot \cot 10^\circ } \right) \cdot \left( {\tan 20^\circ \cdot \cot 20^\circ } \right) \cdot \left( {\tan 30^\circ \cdot \cot 30^\circ } \right) \cdot \left( {\tan 40^\circ \cdot \cot 40^\circ } \right)\]

\[M = 1 \cdot 1 \cdot 1 \cdot 1 = 1\].

b) \(\tan \left( {\frac{{3\pi }}{2} - \alpha } \right)\)\( = \tan \left( {\pi + \frac{\pi }{2} - \alpha } \right)\)\( = \tan \left( {\frac{\pi }{2} - \alpha } \right)\)\( = \cot \alpha \).

Mà \(\frac{\pi }{2} < \alpha < \pi \) nên \(\left. \begin{array}{l}\sin \alpha > 0\\\cos \alpha < 0\end{array} \right\} \Rightarrow \cot \alpha < 0\).

Vậy với \(\frac{\pi }{2} < \alpha < \pi \) thì \(\tan \left( {\frac{{3\pi }}{2} - \alpha } \right) < 0\).

Câu 4

\({u_{n + 1}} = {u_n}\).

\({u_{n + 1}} \ge {u_n}\)

\({u_{n + 1}} < {u_n}\).

\({u_{n + 1}} > {u_n}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP