Câu hỏi:

20/11/2025 231 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang với đáy lớn \(AD,AD = 2BC\). Gọi \(G\) và \(G'\)lần lượt là trọng tâm tam giác \(SAB\) và \(SAD\). \(GG'\) song song với đường thẳng

\(AB\).

\(AC\).

\(BD\).

\(SC\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Cho hình chóp  S . A B C D  có đáy  A B C D  là hình thang với đáy lớn  A D , A D = 2 B C . Gọi  G  và  G ′ lần lượt là trọng tâm tam giác  S A B  và  S A D .  G G ′  song song với đường thẳng (ảnh 1)

Gọi \(M,N\) lần lượt là trung điểm của \(AB\) và \(AD\).

Vì \(M,N\) lần lượt là trung điểm của \(AB\) và \(AD\) nên \(MN\) là đường trung bình của tam giác \(ABD\). Do đó \(MN{\rm{//}}BD\).

Vì \(G\) là trọng tâm tam giác \(SAB\) nên \(\frac{{SG}}{{SM}} = \frac{2}{3}\).

Vì \(G'\)là trọng tâm tam giác \(SAD\) nên \(\frac{{SG'}}{{SN}} = \frac{2}{3}\).

Do \(\frac{{SG}}{{SM}} = \frac{{SG'}}{{SN}} = \frac{2}{3}\) nên \(GG'{\rm{//}}MN\) mà \(MN{\rm{//}}BD\) nên \(GG'{\rm{//}}BD\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Tổng số giáo viên được thống kê là \(3 + 6 + 8 + 7 = 24\).

Giả sử \({x_1};...;{x_{24}}\) là tiền lương của 24 giáo viên được xếp theo thứ tự không giảm.

Do \({x_1};...;{x_3} \in \left[ {6;8} \right)\);

\({x_4};...;{x_9} \in \left[ {8;10} \right)\);

\({x_{10}};...;{x_{17}} \in \left[ {10;12} \right)\);

\({x_{18}};...;{x_{24}} \in \left[ {12;14} \right)\).

Tứ phân vị thứ nhất của mẫu số liệu là \(\frac{1}{2}\left( {{x_6} + {x_7}} \right)\) mà \({x_6};{x_7}\) thuộc nhóm \(\left[ {8;10} \right)\).

Ta xác định được \(n = 24;{n_m} = 6;C = 3;{u_m} = 8;{u_{m + 1}} = 10\).

Ta có \({Q_1} = 8 + \frac{{\frac{{24}}{4} - 3}}{6}\left( {10 - 8} \right) = 9\).

Lời giải

Đáp án đúng là: C

Ta có \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\)\( = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt x + 1}} = \frac{1}{2}\).

\(f\left( 1 \right) = a\).

Để hàm số liên tục tại \({x_0} = 1\) thì \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\)\( \Leftrightarrow a = \frac{1}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP