Câu hỏi:

21/11/2025 28 Lưu

I. Trắc nghiệm (7 điểm)

Trong các phát biểu sau, phát biểu nào là mệnh đề?

A. “Bất phương trình \(3x + 2 < 0\) có nghiệm”;               
B. “Bất phương trình \(3x + 2 < 0\) có phải là bất phương trình bậc nhất hai ẩn không?”;
C. Bất phương trình \(3x + 2 < 0\) là bất phương trình bậc nhất hai ẩn;
D. “Bất phương trình \(3x + 2 < 0\) có vô số nghiệm”.     

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Phát biểu “Bất phương trình \(3x + 2 < 0\) có phải là bất phương trình bậc nhất hai ẩn không?” không phải là mệnh đề vì đây là câu hỏi, không khẳng định tính đúng sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.\(\overrightarrow {OA} \cdot \overrightarrow {OB} = 0\) ;                                                                                           
B.\(\overrightarrow {OA} \cdot \overrightarrow {OC} = \frac{1}{2}\overrightarrow {OA} \cdot \overrightarrow {AC} \);
C.\(\overrightarrow {AB} \cdot \overrightarrow {AC} = \overrightarrow {AB} \cdot \overrightarrow {CD} \);                                             
D.\(\overrightarrow {AB} \cdot \overrightarrow {AC} = \overrightarrow {AC} \cdot \overrightarrow {AD} \).

Lời giải

Đáp án đúng là: C

Cho hình vuông ABCD tâm O. Hỏi mệnh đề nào sau đây sai? (ảnh 1)

hình vuông \(ABCD\) có tâm \(O\) nên hai đường chéo \(AC\)\(BD\) vuông góc với nhau tại trung điểm \(O\) của mỗi đường.

Phương án A: \(\overrightarrow {OA} \bot \overrightarrow {OB} \) suy ra \(\overrightarrow {OA} \cdot \overrightarrow {OB} = 0\) nên đáp án A đúng, loại A.

Phương án B: \(\overrightarrow {OA} \cdot \overrightarrow {OC} = - OA \cdot OC = - O{A^2}\)

\(\frac{1}{2}\overrightarrow {OA} \cdot \overrightarrow {AC} = - \frac{1}{2} \cdot OA \cdot AC = - \frac{1}{2}OA \cdot 2OA = - O{A^2}\).

Suy ra \(\overrightarrow {OA} \cdot \overrightarrow {OC} = \frac{1}{2}\overrightarrow {OA} \cdot \overrightarrow {AC} = - O{A^2}\) nên đáp án B đúng, loại B.

Phương án C và D: \(\overrightarrow {AB} \cdot \overrightarrow {AC} = AB \cdot AC \cdot \cos 45^\circ = AB \cdot AB\sqrt 2 \cdot \frac{{\sqrt 2 }}{2} = A{B^2}\).

\(\overrightarrow {AB} \cdot \overrightarrow {CD} = - AB \cdot DC = - A{B^2}\), \(\overrightarrow {AC} \cdot \overrightarrow {AD} = AC \cdot AD \cdot \cos 45^\circ = AB\sqrt 2 \cdot AB \cdot \frac{{\sqrt 2 }}{2} = A{B^2}\)

\( \Rightarrow \overrightarrow {AB} \cdot \overrightarrow {AC} \ne \overrightarrow {AB} \cdot \overrightarrow {CD} \), \(\overrightarrow {AB} \cdot \overrightarrow {AC} = \overrightarrow {AC} \cdot \overrightarrow {AD} \) nên chọn C và loại D.

Lời giải

Cho hình thang vuông \(AB (ảnh 1)

a) Ta có: \[AC \bot DB \Leftrightarrow \overrightarrow {AC} \cdot \overrightarrow {BD} = 0\]

\[\overrightarrow {AC} \cdot \overrightarrow {BD} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right)\left( {\overrightarrow {AD} - \overrightarrow {AB} } \right)\]

\[ = \overrightarrow {AB} \cdot \overrightarrow {AD} - A{B^2} + \overrightarrow {BC} \cdot \overrightarrow {AD} - \overrightarrow {BC} \cdot \overrightarrow {AB} \]

Ta lại có: \[\overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {BC} \cdot \overrightarrow {AB} = 0\]

\[A{B^2} = {h^2},\overrightarrow {BC} \cdot \overrightarrow {AD} = BC \cdot AD = ab\] .

Do đó, \[\overrightarrow {AC} \cdot \overrightarrow {BD} = 0 - {h^2} + ab - 0 = ab - {h^2}\].

Vậy \[\overrightarrow {AC} \bot \overrightarrow {BD} \Leftrightarrow ab - {h^2} = 0\].

b) Vì \(I\) là trung điểm \(CD\) nên \[\overrightarrow {AI} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {AD} } \right)\]\[\overrightarrow {BI} = \frac{1}{2}\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right)\].

Khi đó ta có: \[\widehat {AIB} = 90^\circ \Leftrightarrow \overrightarrow {AI} \cdot \overrightarrow {BI} = 0 \Leftrightarrow \left( {\overrightarrow {AC} + \overrightarrow {AD} } \right)\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right) = 0\]

\[ \Leftrightarrow \overrightarrow {AC} \cdot \overrightarrow {BC} + \overrightarrow {AC} \cdot \overrightarrow {BD} + \overrightarrow {AD} \cdot \overrightarrow {BC} + \overrightarrow {AD} \cdot \overrightarrow {BD} = 0\]

\[\overrightarrow {AC} \cdot \overrightarrow {BC} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right)\overrightarrow {BC} = \overrightarrow {AB} \cdot \overrightarrow {BC} + {\overrightarrow {BC} ^2} = 0 + B{C^2} = {b^2}\]; \[\overrightarrow {AC} \cdot \overrightarrow {BD} = ab - {h^2}\];

\[\overrightarrow {AD} \cdot \overrightarrow {BC} = AD \cdot BC = ab\]ADBD=ADBA+AD=ADBA+AD2=0+AD2=a2

Do đó, ta có: \[\widehat {AIB} = 90^\circ \Leftrightarrow {a^2} + {b^2} - {h^2} + 2ab = 0 \Leftrightarrow a + b = h.\]

Câu 3

A. \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AB} + \overrightarrow {AC} \);                     
B. \(\overrightarrow {AG} = \frac{1}{3}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \);             
C. \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \);                                             
D. AG=13AB+13AC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[2\overrightarrow {a\,} - \overrightarrow {\,b\,} \];                                 
B. \[ - \,\overrightarrow {a\,} + \frac{1}{2}\overrightarrow {b\,} \];                  
C. \[4\,\overrightarrow {a\,} + 2\overrightarrow {b\,} \];                                 
D. \[ - \,\overrightarrow {a\,} + \overrightarrow b \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Giá trị của hàm số tại \(x = 3\)\(y = 3\);    
B. Giá trị của hàm số tại \(x = 3\)\(y = 2\);
C. Giá trị của hàm số tại \(x = 4\)\(y = \frac{3}{5}\);    
D. Giá trị của hàm số tại \(x = 4\)\(y = \frac{3}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho hệ bất phương trình \(\left\{ \begin{array}{l}x + 2y > 5\\2x - 5y < 9\end{array} \right.\). Cặp số nào sau đây không là nghiệm của hệ bất phương trình trên?

A. \(\left( {2;\,\,3} \right)\);                                
B. \(\left( {5;\,\,1} \right)\);        
C. \(\left( { - 1;\,\,4} \right)\);                                                              
D. \(\left( { - 2;\,\, - 5} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP