Câu hỏi:

21/11/2025 66 Lưu

Cho bảng sau biểu diễn \(y\) là hàm số của \(x\):

\(x\)

2

3

4

5

\(y\)

3

2

\(\frac{5}{3}\)

\(\frac{3}{2}\)

Khẳng định nào sau đây đúng?

A. Giá trị của hàm số tại \(x = 3\)\(y = 3\);    
B. Giá trị của hàm số tại \(x = 3\)\(y = 2\);
C. Giá trị của hàm số tại \(x = 4\)\(y = \frac{3}{5}\);    
D. Giá trị của hàm số tại \(x = 4\)\(y = \frac{3}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Từ bảng trên ta thấy, giá trị của hàm số tại \(x = 3\)\(y = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình thang vuông \(AB (ảnh 1)

a) Ta có: \[AC \bot DB \Leftrightarrow \overrightarrow {AC} \cdot \overrightarrow {BD} = 0\]

\[\overrightarrow {AC} \cdot \overrightarrow {BD} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right)\left( {\overrightarrow {AD} - \overrightarrow {AB} } \right)\]

\[ = \overrightarrow {AB} \cdot \overrightarrow {AD} - A{B^2} + \overrightarrow {BC} \cdot \overrightarrow {AD} - \overrightarrow {BC} \cdot \overrightarrow {AB} \]

Ta lại có: \[\overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {BC} \cdot \overrightarrow {AB} = 0\]

\[A{B^2} = {h^2},\overrightarrow {BC} \cdot \overrightarrow {AD} = BC \cdot AD = ab\] .

Do đó, \[\overrightarrow {AC} \cdot \overrightarrow {BD} = 0 - {h^2} + ab - 0 = ab - {h^2}\].

Vậy \[\overrightarrow {AC} \bot \overrightarrow {BD} \Leftrightarrow ab - {h^2} = 0\].

b) Vì \(I\) là trung điểm \(CD\) nên \[\overrightarrow {AI} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {AD} } \right)\]\[\overrightarrow {BI} = \frac{1}{2}\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right)\].

Khi đó ta có: \[\widehat {AIB} = 90^\circ \Leftrightarrow \overrightarrow {AI} \cdot \overrightarrow {BI} = 0 \Leftrightarrow \left( {\overrightarrow {AC} + \overrightarrow {AD} } \right)\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right) = 0\]

\[ \Leftrightarrow \overrightarrow {AC} \cdot \overrightarrow {BC} + \overrightarrow {AC} \cdot \overrightarrow {BD} + \overrightarrow {AD} \cdot \overrightarrow {BC} + \overrightarrow {AD} \cdot \overrightarrow {BD} = 0\]

\[\overrightarrow {AC} \cdot \overrightarrow {BC} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right)\overrightarrow {BC} = \overrightarrow {AB} \cdot \overrightarrow {BC} + {\overrightarrow {BC} ^2} = 0 + B{C^2} = {b^2}\]; \[\overrightarrow {AC} \cdot \overrightarrow {BD} = ab - {h^2}\];

\[\overrightarrow {AD} \cdot \overrightarrow {BC} = AD \cdot BC = ab\]ADBD=ADBA+AD=ADBA+AD2=0+AD2=a2

Do đó, ta có: \[\widehat {AIB} = 90^\circ \Leftrightarrow {a^2} + {b^2} - {h^2} + 2ab = 0 \Leftrightarrow a + b = h.\]

Câu 2

A. \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AB} + \overrightarrow {AC} \);                     
B. \(\overrightarrow {AG} = \frac{1}{3}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \);             
C. \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \);                                             
D. AG=13AB+13AC.

Lời giải

Đáp án đúng là: D

Đáp án đúng là: B (ảnh 1)

Do \(M\) là trung điểm \(BC\) nên \(\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\)\(AM\) là trung tuyến của tam giác \[ABC\].   

Hơn nữa, \(G\) là trọng tâm của tam giác \[ABC\] nên \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} \).  

Do đó, \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} = \frac{2}{3} \cdot \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \).

Câu 3

A.\(\overrightarrow {OA} \cdot \overrightarrow {OB} = 0\) ;                                                                                           
B.\(\overrightarrow {OA} \cdot \overrightarrow {OC} = \frac{1}{2}\overrightarrow {OA} \cdot \overrightarrow {AC} \);
C.\(\overrightarrow {AB} \cdot \overrightarrow {AC} = \overrightarrow {AB} \cdot \overrightarrow {CD} \);                                             
D.\(\overrightarrow {AB} \cdot \overrightarrow {AC} = \overrightarrow {AC} \cdot \overrightarrow {AD} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(S = \left\{ { - \frac{5}{4}} \right\}\);          
B. \(S = \left\{ { - \frac{5}{4};\,\,7} \right\}\);                            
C. \(S = \left\{ {\,7} \right\}\);            
D. \(S = \left\{ {\frac{5}{4};\,\, - 7} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[2\overrightarrow {a\,} - \overrightarrow {\,b\,} \];                                 
B. \[ - \,\overrightarrow {a\,} + \frac{1}{2}\overrightarrow {b\,} \];                  
C. \[4\,\overrightarrow {a\,} + 2\overrightarrow {b\,} \];                                 
D. \[ - \,\overrightarrow {a\,} + \overrightarrow b \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho hàm số \(y = a{x^2} + bc + c\,\,\left( {a \ne 0} \right)\) có đồ thị \(\left( P \right)\). Biết đồ thị của hàm số có đỉnh \(I\left( {1;\,\,1} \right)\) và đi qua điểm \(A\left( {2;\,\,3} \right)\). Tính tổng \(S = {a^2} + {b^2} + {c^2}\) ta được kết quả là

A. 29;                          
B. 1;                                 
C. 3;                                 
D. 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP