(1 điểm) Một tháp viễn thông cao 48 m được dựng thẳng đứng trên một sườn dốc \(25^\circ \) so với phương ngang. Từ đỉnh tháp, người ta neo một sợi dây cáp xuống một điểm trên sườn dốc cách chân tháp 35 m như hình dưới. Tính chiều dài của sợi dây cáp đó.

(1 điểm) Một tháp viễn thông cao 48 m được dựng thẳng đứng trên một sườn dốc \(25^\circ \) so với phương ngang. Từ đỉnh tháp, người ta neo một sợi dây cáp xuống một điểm trên sườn dốc cách chân tháp 35 m như hình dưới. Tính chiều dài của sợi dây cáp đó.

Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Gọi \(A,\,B,\,C,M,\,H\) lần lượt là đỉnh tháp viễn thông, điểm trên sườn dốc cách chân tháp 35 m, chân tháp viễn thông, chân sườn dốc, hình chiếu của điểm A lên phương ngang như hình vẽ sau

Khi đó ta có: \(AC = 48\,\)m, \(BC = 35\)m, \(\widehat {CMH} = 25^\circ \), \(\widehat {CHM} = 90^\circ \).
Suy ra \(\widehat {MCH} = 90^\circ - 25^\circ = 65^\circ \).
Ta có: \(\widehat {ACB} = \widehat {MCH} = 65^\circ \) (2 góc đối đỉnh).
Áp dụng định lí côsin trong tam giác \(ABC\) ta có
\(A{B^2} = A{C^2} + B{C^2} - 2AC \cdot BC \cdot \cos \widehat {ACB}\)\( = {48^2} + {35^2} - 2 \cdot 48 \cdot 35 \cdot \cos 65^\circ \approx 2\,\,109\)
Suy ra \(AB \approx 46\) (m).
Vậy chiều dài của sợi dây cáp đó khoảng 46 m.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: C

Vì hình vuông \(ABCD\) có tâm \(O\) nên hai đường chéo \(AC\) và \(BD\) vuông góc với nhau tại trung điểm \(O\) của mỗi đường.
Phương án A: \(\overrightarrow {OA} \bot \overrightarrow {OB} \) suy ra \(\overrightarrow {OA} \cdot \overrightarrow {OB} = 0\) nên đáp án A đúng, loại A.
Phương án B: \(\overrightarrow {OA} \cdot \overrightarrow {OC} = - OA \cdot OC = - O{A^2}\)
và \(\frac{1}{2}\overrightarrow {OA} \cdot \overrightarrow {AC} = - \frac{1}{2} \cdot OA \cdot AC = - \frac{1}{2}OA \cdot 2OA = - O{A^2}\).
Suy ra \(\overrightarrow {OA} \cdot \overrightarrow {OC} = \frac{1}{2}\overrightarrow {OA} \cdot \overrightarrow {AC} = - O{A^2}\) nên đáp án B đúng, loại B.
Phương án C và D: \(\overrightarrow {AB} \cdot \overrightarrow {AC} = AB \cdot AC \cdot \cos 45^\circ = AB \cdot AB\sqrt 2 \cdot \frac{{\sqrt 2 }}{2} = A{B^2}\).
\(\overrightarrow {AB} \cdot \overrightarrow {CD} = - AB \cdot DC = - A{B^2}\), \(\overrightarrow {AC} \cdot \overrightarrow {AD} = AC \cdot AD \cdot \cos 45^\circ = AB\sqrt 2 \cdot AB \cdot \frac{{\sqrt 2 }}{2} = A{B^2}\)
\( \Rightarrow \overrightarrow {AB} \cdot \overrightarrow {AC} \ne \overrightarrow {AB} \cdot \overrightarrow {CD} \), \(\overrightarrow {AB} \cdot \overrightarrow {AC} = \overrightarrow {AC} \cdot \overrightarrow {AD} \) nên chọn C và loại D.
Lời giải

a) Ta có: \[AC \bot DB \Leftrightarrow \overrightarrow {AC} \cdot \overrightarrow {BD} = 0\]
\[\overrightarrow {AC} \cdot \overrightarrow {BD} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right)\left( {\overrightarrow {AD} - \overrightarrow {AB} } \right)\]
\[ = \overrightarrow {AB} \cdot \overrightarrow {AD} - A{B^2} + \overrightarrow {BC} \cdot \overrightarrow {AD} - \overrightarrow {BC} \cdot \overrightarrow {AB} \]
Ta lại có: \[\overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {BC} \cdot \overrightarrow {AB} = 0\]
Và \[A{B^2} = {h^2},\overrightarrow {BC} \cdot \overrightarrow {AD} = BC \cdot AD = ab\] .
Do đó, \[\overrightarrow {AC} \cdot \overrightarrow {BD} = 0 - {h^2} + ab - 0 = ab - {h^2}\].
Vậy \[\overrightarrow {AC} \bot \overrightarrow {BD} \Leftrightarrow ab - {h^2} = 0\].
b) Vì \(I\) là trung điểm \(CD\) nên \[\overrightarrow {AI} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {AD} } \right)\] và \[\overrightarrow {BI} = \frac{1}{2}\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right)\].
Khi đó ta có: \[\widehat {AIB} = 90^\circ \Leftrightarrow \overrightarrow {AI} \cdot \overrightarrow {BI} = 0 \Leftrightarrow \left( {\overrightarrow {AC} + \overrightarrow {AD} } \right)\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right) = 0\]
\[ \Leftrightarrow \overrightarrow {AC} \cdot \overrightarrow {BC} + \overrightarrow {AC} \cdot \overrightarrow {BD} + \overrightarrow {AD} \cdot \overrightarrow {BC} + \overrightarrow {AD} \cdot \overrightarrow {BD} = 0\]
Mà \[\overrightarrow {AC} \cdot \overrightarrow {BC} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right)\overrightarrow {BC} = \overrightarrow {AB} \cdot \overrightarrow {BC} + {\overrightarrow {BC} ^2} = 0 + B{C^2} = {b^2}\]; \[\overrightarrow {AC} \cdot \overrightarrow {BD} = ab - {h^2}\];
\[\overrightarrow {AD} \cdot \overrightarrow {BC} = AD \cdot BC = ab\];
Do đó, ta có: \[\widehat {AIB} = 90^\circ \Leftrightarrow {a^2} + {b^2} - {h^2} + 2ab = 0 \Leftrightarrow a + b = h.\]
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.