Câu hỏi:

21/11/2025 40 Lưu

Cho tam giác \(ABC\)\(BC = 5\sqrt 5 ,\,AC = 5\sqrt 2 ,\,AB = 5\). Số đo góc \(A\) là 

A. \(60^\circ \);           
B. \(45^\circ \);               
C. \(30^\circ \);                                                                         
D. \(135^\circ \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Áp dụng hệ quả của định lí côsin trong tam giác \(ABC\), ta có:

\(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2 \cdot AB \cdot AC}} = \frac{{{5^2} + {{\left( {5\sqrt 2 } \right)}^2} - {{\left( {5\sqrt 5 } \right)}^2}}}{{2 \cdot 5 \cdot 5\sqrt 2 }} = - \frac{{\sqrt 2 }}{2}\).

Suy ra \(\widehat A = 135^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(m = \pm 2\);       
B. \(m = \pm 4\);           
C. \(m = 4\);                               
D. Không có \(m\).

Lời giải

Đáp án đúng là: A

Hàm số \(y = {x^2} + 2mx + 5\)\(a = 1 > 0\) nên hàm số đạt giá trị nhỏ nhất khi \(x = - \frac{b}{{2a}} = - \frac{{2m}}{{2.1}} = - m\).

Theo bài ra ta có: \(y\left( { - m} \right) = 1 \Leftrightarrow {\left( { - m} \right)^2} + 2m.\left( { - m} \right) + 5 = 1 \Leftrightarrow {m^2} = 4 \Leftrightarrow m = \pm 2\).

Câu 2

Cho ba điểm \(A\), \(B\), \(C\) phân biệt. Có tất cả bao nhiêu véctơ khác vectơ – không có điểm đầu, điểm cuối là hai điểm trong ba điểm \(A\), \(B\), \(C\)?

A. 3;                            
B. 4;                                 
C. 5;                                            
D. 6.

Lời giải

Đáp án đúng là: D

Có các vectơ: \(\overrightarrow {AB} \), \(\overrightarrow {BA} \), \(\overrightarrow {AC} \), \(\overrightarrow {CA} \), \(\overrightarrow {BC} \), \(\overrightarrow {CB} \).

Vậy có 6 vectơ.

Câu 4

A. – 18;                       
B. 18;                               
C. 36;      
D. – 36.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 5;                            
B. 6;                                 
C. 7;     
D. 8.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\overrightarrow {AM} = \frac{1}{3}\overrightarrow {AB} + \frac{2}{3}\overrightarrow {AC} \];   
B. \[\overrightarrow {AM} = \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \];
C. \[\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {AC} \];                                   
D. \[\overrightarrow {AM} = \frac{2}{5}\overrightarrow {AB} + \frac{3}{5}\overrightarrow {AC} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP