CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \[\mathop {\lim }\limits_{x \to 2} \frac{{\sqrt {x + 7} - 3}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {\sqrt {x + 7} - 3} \right)\left( {\sqrt {x + 7} + 3} \right)}}{{\left( {x - 2} \right)\left( {\sqrt {x + 7} + 3} \right)}}\]

                                 \[{\rm{ = }}\mathop {\lim }\limits_{x \to 2} \frac{{x - 2}}{{\left( {x - 2} \right)\left( {\sqrt {x + 7} + 3} \right)}}\]

                                \[{\rm{ = }}\mathop {\lim }\limits_{x \to 2} \frac{1}{{\left( {\sqrt {x + 7} + 3} \right)}} = \frac{1}{6}\].

Câu 4

A. \(0.\)   
B. \( + \infty .\)      
C. \(1.\)      

D. \( - \infty .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\mathop {\lim }\limits_{n \to + \infty } {u_n} = a.\]    
B. \[\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0.\] 
C. \[\mathop {\lim }\limits_{n \to + \infty } {u_n} = - a.\]      
D. \[\mathop {\lim }\limits_{n \to + \infty } {u_n} = \left| a \right|.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP