Hội Lim (tỉnh Bắc Ninh) được tổ chức vào mùa xuân thường có trò chơi đánh đu. Khi người chơi nhún đều, cây đu sẽ đưa người chơi dao động quanh vị trí cân bằng (hình vẽ). Nghiên cứu trò chơi này, người ta thấy khoảng cách \[h\left( m \right)\] từ vị trí người chơi đu đến vị trí cân bằng được biểu diễn qua thời gian \[t\left( s \right)\] với \[t \ge 0\] bởi hệ thức \[h = \left| d \right|\] với \[d = 3\cos \left[ {\frac{\pi }{3}\left( {2t - 1} \right)} \right],\]trong đó ta quy ước \[d > 0\]khi vị trí cân bằng ở phía sau lưng người chơi đu và \[d < 0\] trong trường hợp ngược lại. Cần mất bao nhiêu thời gian tính từ lúc bắt đầu chơi đánh đu thì người chơi ở vị trí cân bằng lần thứ hai.

Quảng cáo
Trả lời:
Khi người chơi ở vị trí cân bằng thì
\[\begin{array}{l}S = 0 \Leftrightarrow 3\cos \left[ {\frac{\pi }{3}\left( {2t - 1} \right)} \right] = 0 \Leftrightarrow t = \frac{5}{4} + \frac{3}{2}k,k \in \mathbb{Z}\\t \ge 0 \Leftrightarrow \frac{5}{4} + \frac{3}{2}k \ge 0,k \in \mathbb{Z} \Leftrightarrow k \ge - \frac{5}{6},k \in \mathbb{Z}\end{array}\]
\[ \Rightarrow k \in \left\{ {0,1,2,3,...} \right\}\]
Khi người chơi ở vị trí cân bằng lần thứ 2 thì \[k = 1 \Rightarrow t = \frac{{11}}{4}\left( s \right)\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
D. Các cạnh bên của hình lăng trụ không bằng nhau.
Lời giải
Lời giải
Ta có: \[\mathop {\lim }\limits_{x \to 2} \frac{{\sqrt {x + 7} - 3}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {\sqrt {x + 7} - 3} \right)\left( {\sqrt {x + 7} + 3} \right)}}{{\left( {x - 2} \right)\left( {\sqrt {x + 7} + 3} \right)}}\]
\[{\rm{ = }}\mathop {\lim }\limits_{x \to 2} \frac{{x - 2}}{{\left( {x - 2} \right)\left( {\sqrt {x + 7} + 3} \right)}}\]
\[{\rm{ = }}\mathop {\lim }\limits_{x \to 2} \frac{1}{{\left( {\sqrt {x + 7} + 3} \right)}} = \frac{1}{6}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
D. \( - \infty .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
