Câu hỏi:

24/11/2025 5 Lưu

Gọi \(M\), \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = 6\left( {\cos \left( {2x + \frac{\pi }{3}} \right) + \cos \left( {2x - \frac{\pi }{3}} \right)} \right) - 7\) trên đoạn \(\left[ { - \frac{\pi }{3};\frac{\pi }{6}} \right]\). Giá trị \(M + m\) bằng

A. 17.                         
B. \( - 10\).               
C. \( - 11\).                           
D. \( - 14\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có \(y = 6\left( {\cos \left( {2x + \frac{\pi }{3}} \right) + \cos \left( {2x - \frac{\pi }{3}} \right)} \right) - 7 = 6\cos 2x - 7\).

Do \(x \in \left[ { - \frac{\pi }{3};\frac{\pi }{6}} \right] \Leftrightarrow 2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right]\) nên \( - \frac{1}{2} \le \cos 2x \le 1\). Suy ra \( - 10 \le y = 6\cos 2x - 7 \le  - 1\).

Vậy \(M =  - 1\) và \(m =  - 10\) nên \(M + m =  - 11\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Quan sát đồ thị hàm số \(y = \cos x\) trên \(\left( {\frac{{ - \pi }}{2};3\pi } \right)\)

Vẽ đồ thị hàm số \(y = \cos x.\) Từ đó suy ra số nghiệm của phương trình \(\cos x = \frac{{ - 1}}{3}\) trên \(\left( {\frac{{ - \pi }}{2};3\pi } \right).\). (ảnh 1)

Ta thấy đường thẳng \(y =  - \frac{1}{3}\) cắt đồ thị hàm số \(y = \cos x\) tại 3 điểm phân biệt trên \(\left( {\frac{{ - \pi }}{2};3\pi } \right)\), nên phương trình \(\cos x = \frac{{ - 1}}{3}\) có 3 nghiệm thuộc \(\left( {\frac{{ - \pi }}{2};3\pi } \right)\).

Câu 2

A. \(AC\).                  
B. \(CD\).                
C. \(AB\).                       
D. \(BD\).

Lời giải

Chọn A

Giao tuyến của hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {CDA} \right)\) là đường thẳng \(AC\).

Câu 3

A. \(6\).                      
B. \(3\).                    
C. \(4\).                           
D. \(2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({230^0} + k{360^0}\).                       
B. \({50^0} + k{360^0}\).            
C. \({150^0} + k{360^0}\).               
D. \( - {230^0} + k{360^0}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Nếu \(b\) chứa hai điểm phân biệt thuộc \(\left( P \right)\) thì \(b\) nằm trong \(\left( P \right).\)
B. Nếu \(a\) và \(b\) cùng nằm trong \(\left( P \right)\) thì \(a\) cắt \(b.\)
C. Nếu \(a\) nằm trong \(\left( P \right)\) và \(a\) cắt \(b\) thì \(b\) nằm trong \(\left( P \right).\)
D. Nếu \(a\) chứa một điểm trong \(\left( P \right)\) thì \(a\) nằm trong \(\left( P \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( {SAC} \right).\)                        
B. \(\left( {ABCD} \right).\)     
C. \(\left( {SAB} \right).\)                    
D. \(\left( {SAD} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP