(1.0 điểm) Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình thang, \[AB\] song song \[CD\] và \[AB < CD\]. Gọi \[M\], \[N\] lần lượt là trung điểm \[SC\], \[SD\].
a) Chứng minh \[MN\] song song \[AB\].
b) Tìm giao điểm của đường thẳng \[DM\] với mặt phẳng \[\left( {SAB} \right)\].
(1.0 điểm) Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình thang, \[AB\] song song \[CD\] và \[AB < CD\]. Gọi \[M\], \[N\] lần lượt là trung điểm \[SC\], \[SD\].
a) Chứng minh \[MN\] song song \[AB\].
b) Tìm giao điểm của đường thẳng \[DM\] với mặt phẳng \[\left( {SAB} \right)\].
Quảng cáo
Trả lời:
![Cho hình chóp \[S.ABCD\] có đáy (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/11/21-1763998018.png)
a) Ta có \[MN\] là đường trung bình trong tam giác \(SDC\) nên \(MN\,{\rm{//}}\,CD\).
Do \[AB\,{\rm{//}}\,CD\] nên \[MN\,{\rm{//}}\,AB\].
b) Ta có \(\left\{ {\begin{array}{*{20}{c}}{S \in \left( {SAB} \right) \cap \left( {SCD} \right)}\\{AB\,{\rm{//}}\,CD}\\{AB \subset \left( {SAB} \right)}\\{CD \subset \left( {SCD} \right)}\end{array}} \right.\)
Nên \(\left( {SAB} \right) \cap \left( {SCD} \right) = d\) với \[d\] là đường thẳng qua \(S\) và \[d\,{\rm{//}}\,AB\,{\rm{//}}\,CD\].
Trong \(\left( {SCD} \right)\), gọi \(E\) là giao điểm của \(d\) và \(DM\).
Mà \(d \subset \left( {SAB} \right)\) nên \[E = DM \cap \left( {SAB} \right)\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Giao tuyến của hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {CDA} \right)\) là đường thẳng \(AC\).
Lời giải
Quan sát đồ thị hàm số \(y = \cos x\) trên \(\left( {\frac{{ - \pi }}{2};3\pi } \right)\)

Ta thấy đường thẳng \(y = - \frac{1}{3}\) cắt đồ thị hàm số \(y = \cos x\) tại 3 điểm phân biệt trên \(\left( {\frac{{ - \pi }}{2};3\pi } \right)\), nên phương trình \(\cos x = \frac{{ - 1}}{3}\) có 3 nghiệm thuộc \(\left( {\frac{{ - \pi }}{2};3\pi } \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.