Cho hàm số \(y = ax + b\).
a) Với \(a = 0\) và \(b \ne 0\) thì đồ thị hàm số đã cho biểu diễn tất cả các nghiệm của phương trình nào? Đồ thị có vị trí như thế nào đối với trục hoành và trục hoành?
b) Xác định \(a\) và \(b\) để đồ thị hàm số đi qua hai điểm \(A\left( {3; - 6} \right)\) và \(B\left( { - 2;4} \right).\)
Cho hàm số \(y = ax + b\).
a) Với \(a = 0\) và \(b \ne 0\) thì đồ thị hàm số đã cho biểu diễn tất cả các nghiệm của phương trình nào? Đồ thị có vị trí như thế nào đối với trục hoành và trục hoành?
b) Xác định \(a\) và \(b\) để đồ thị hàm số đi qua hai điểm \(A\left( {3; - 6} \right)\) và \(B\left( { - 2;4} \right).\)
Quảng cáo
Trả lời:
a) Với \(a = 0\) và \(b \ne 0\) ta có hàm số \(y = b.\)
Đồ thị hàm số \(y = b\) với \(b \ne 0\) có đồ thị là đường thẳng song song với trục hoành và vuông góc với trục tung tại điểm \(b\) nằm trên trục tung.
b) Để đồ thị hàm số \(y = ax + b\) đi qua điểm \(A\left( {3; - 6} \right)\) thì tọa độ điểm \(A\) thỏa mãn hàm số đã cho.
Thay \(x = 3,\,\,y = - 6\) vào hàm số \(y = ax + b,\) ta được:
\( - 6 = a \cdot 3 + b\) hay \(3a + b = - 6\) (1)
Để đồ thị hàm số \(y = ax + b\) đi qua điểm \(B\left( { - 2;4} \right)\) thì tọa độ điểm \(B\) thỏa mãn hàm số đã cho.
Thay \(x = - 2,\,\,y = 4\) vào hàm số \(y = ax + b,\) ta được:
\(4 = a \cdot \left( { - 2} \right) + b\) hay \( - 2a + b = 4\) (2)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}3a + b = - 6\\ - 2a + b = 4\end{array} \right.\)
Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ phương trình trên, ta được:
\(5a = - 10\) suy ra \(a = - 2\).
Thay \(a = - 2\) vào phương trình \(3a + b = - 6,\) ta được:
\(3 \cdot \left( { - 2} \right) + b = - 6\) suy ra \(b = 0.\)
Vậy \(a = - 2\) và \(b = 0.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Một ngân hàng đang áp dụng lãi suất gửi tiết kiệm kì hạn 12 tháng là \(5\% /\)năm. Bà Hoa dự định gửi một khoản tiền vào ngân hàng này để có số tiền lãi hàng năm ít nhất là 20 triệu đồng.
a) Gọi \(x\) (triệu đồng) là số tiền mà bà Hoa cần gửi tiết kiệm. Hãy viết bất phương trình phù hợp với dữ liệu đề bài.
b) Hỏi số tiền mà bà Hoa cần gửi tiết kiệm ít nhất là bao nhiêu?
Một ngân hàng đang áp dụng lãi suất gửi tiết kiệm kì hạn 12 tháng là \(5\% /\)năm. Bà Hoa dự định gửi một khoản tiền vào ngân hàng này để có số tiền lãi hàng năm ít nhất là 20 triệu đồng.
a) Gọi \(x\) (triệu đồng) là số tiền mà bà Hoa cần gửi tiết kiệm. Hãy viết bất phương trình phù hợp với dữ liệu đề bài.
b) Hỏi số tiền mà bà Hoa cần gửi tiết kiệm ít nhất là bao nhiêu?
Lời giải
a) Số tiền lãi bà Hoa thu được trong một năm là \(0,05x\) (triệu đồng).
Để có được số tiền lãi ít nhất là \(20\) triệu đồng/năm thì cần có: \(0,05x \ge 20\).
Vậy bất phương trình cần tìm là: \(0,05x \ge 20\).
b) Giải bất phương trình:
\(0,05x \ge 20\)
\(x \ge 400.\)
Vậy bà Hoa cần gửi ngân hàng ít nhất là \(400\) triệu đồng.
Lời giải
Xét \(\Delta BCN\) vuông tại \(N,\) ta có:
\(BN = BC \cdot \sin \widehat {BCN} = 60 \cdot \sin 32^\circ \approx 31,80{\rm{\;(cm)}}{\rm{.}}\)
Ta thấy \(NC\) và \(BM\) là các đoạn thẳng nằm trên phương ngang nên \(NC\,{\rm{//}}\,BM,\) suy ra \(\widehat {CBM} = \widehat {BCN} = 32^\circ \) (so le trong).
Khi đó, \(\widehat {ABM} = \widehat {ABC} - \widehat {CBM} = 53^\circ - 32^\circ = 21^\circ \).
Xét \(\Delta ABM\) vuông tại \(M\), ta có:
\(AM = AB \cdot \sin \widehat {ABM} = 60 \cdot \sin 21^\circ \approx 21,50\) (cm).
Vậy, độ cao của điểm \(A\) trên đầu cánh tay robot so với mặt đất là:
\(AM + BN + CP \approx 21,50 + 31,80 + 17 = 70,3\) (cm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
