Câu hỏi:

26/11/2025 5 Lưu

Cho hàm số \(y = ax + b\).

a) Với \(a = 0\) và \(b \ne 0\) thì đồ thị hàm số đã cho biểu diễn tất cả các nghiệm của phương trình nào? Đồ thị có vị trí như thế nào đối với trục hoành và trục hoành?

b) Xác định \(a\) và \(b\) để đồ thị hàm số đi qua hai điểm \(A\left( {3; - 6} \right)\) và \(B\left( { - 2;4} \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Với \(a = 0\) và \(b \ne 0\) ta có hàm số \(y = b.\)

Đồ thị hàm số \(y = b\) với \(b \ne 0\) có đồ thị là đường thẳng song song với trục hoành và vuông góc với trục tung tại điểm \(b\) nằm trên trục tung.

b) Để đồ thị hàm số \(y = ax + b\) đi qua điểm \(A\left( {3; - 6} \right)\) thì tọa độ điểm \(A\) thỏa mãn hàm số đã cho.

Thay \(x = 3,\,\,y =  - 6\) vào hàm số \(y = ax + b,\) ta được:

\( - 6 = a \cdot 3 + b\) hay \(3a + b =  - 6\)   (1)

Để đồ thị hàm số \(y = ax + b\) đi qua điểm \(B\left( { - 2;4} \right)\) thì tọa độ điểm \(B\) thỏa mãn hàm số đã cho.

Thay \(x =  - 2,\,\,y = 4\) vào hàm số \(y = ax + b,\) ta được:

\(4 = a \cdot \left( { - 2} \right) + b\) hay \( - 2a + b = 4\)   (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}3a + b =  - 6\\ - 2a + b = 4\end{array} \right.\)

Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ phương trình trên, ta được:

\(5a =  - 10\) suy ra \(a =  - 2\).

Thay \(a =  - 2\) vào phương trình \(3a + b =  - 6,\) ta được:

\(3 \cdot \left( { - 2} \right) + b =  - 6\) suy ra \(b = 0.\)

Vậy \(a =  - 2\) và \(b = 0.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) là số lượng khách thứ 51 trở lên, \(x > 0,\,\,x \in \mathbb{N}.\)

Cứ thêm một người thì giá chuyến du lịch còn lại là: \[300\,\,0000 - 50\,\,000 \cdot 1\] đồng/ người cho toàn bộ hành khách.

Thêm \(x\) người thì giá chuyến du lịch còn lại là: \[300\,\,0000 - 50\,\,000x\] đồng/người cho toàn bộ hành khách.

Doanh thu công ty du lịch thu được là:

\(T = \left( {50 + x} \right)\left( {3\,\,000\,\,000 - 50\,\,000x} \right) = 50\,\,000\left( {50 + x} \right)\left( {60 - x} \right)\) (đồng).

Để doanh thu cao nhất thì ta tìm giá trị lớn nhất của biểu thức \(T.\)

⦁ Chứng minh bất đẳng thức: \(ab \le {\left( {\frac{{a + b}}{2}} \right)^2}\,\,\,\,\left( * \right)\) với \(a,\,\,b\) là các số không âm.

Thật vậy, xét hiệu \({\left( {\frac{{a + b}}{2}} \right)^2} - ab = \frac{{{a^2} + 2ab + {b^2} - 4ab}}{4} = \frac{{{a^2} - 2ab + {b^2}}}{4} = \frac{{{{\left( {a - b} \right)}^2}}}{2}\)

Với mọi \(a,\,\,b\) là các số không âm, ta có:

\({\left( {a - b} \right)^2} \ge 0\) nên \(\frac{{{{\left( {a - b} \right)}^2}}}{2} \ge 0\) suy ra \({\left( {\frac{{a + b}}{2}} \right)^2} \ge ab\).

Dấu “=” xảy ra khi và chỉ khi \(a = b.\) Như vậy bất đẳng thức \(\left( * \right)\) đã được chứng minh.

⦁ Áp dụng bất đẳng thức \(\left( * \right)\) vào biểu thức \(T = 50\,\,000\left( {50 + x} \right)\left( {60 - x} \right),\) ta được:

\[T = 50\,\,000\left( {50 + x} \right)\left( {60 - x} \right) \le 50\,\,000 \cdot {\left( {\frac{{50 + x + 60 - x}}{2}} \right)^2} = 151\,\,250\,\,000\].

Dấu “=” xảy ra khi và chỉ khi \[50 + x = 60 - x\] hay \[x = 5\].

Vậy nếu đoàn khách có \(50 + 5 = 55\) người thì công ty du lịch đạt doanh thu cao nhất là \[151\,\,250\,\,000\] đồng.

Lời giải

a) \(\left( {1 - 2x} \right)\left( {x + 5} \right) = 0\)

\(1 - 2x = 0\) hoặc \(x + 5 = 0\)

\(2x = 1\) hoặc \(x =  - 5\)

\(x = \frac{1}{2}\) hoặc \(x =  - 5\)

Vậy phương trình đã cho có nghiệm là \(x = \frac{1}{2};\,\,x =  - 5.\)

b) Điều kiện xác định: \(x \ne 0,\,\,x \ne 2,\,\,x \ne  - 2.\)

\(\frac{2}{{{x^2} - 4}} - \frac{{x - 1}}{{x\left( {x - 2} \right)}} + \frac{{x - 4}}{{x\left( {x + 2} \right)}} = 0\)

\(\frac{{2x}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{\left( {x - 1} \right)\left( {x + 2} \right)}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{\left( {x - 4} \right)\left( {x - 2} \right)}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} = 0\)

\(2x - \left( {x - 1} \right)\left( {x + 2} \right) + \left( {x - 4} \right)\left( {x - 2} \right) = 0\)

\(2x - \left( {{x^2} + 2x - x - 2} \right) + \left( {{x^2} - 2x - 4x + 8} \right) = 0\)

\(2x - \left( {{x^2} + x - 2} \right) + \left( {{x^2} - 6x + 8} \right) = 0\)

\(2x - {x^2} - x + 2 + {x^2} - 6x + 8 = 0\)

\( - 5x + 10 = 0\)

\( - 5x =  - 10\)

    \(x = 2\) (không thỏa mãn điều kiện).

Vậy phương trình đã cho vô nghiệm.

Câu 5

Một ngân hàng đang áp dụng lãi suất gửi tiết kiệm kì hạn 12 tháng là \(5\% /\)năm. Bà Hoa dự định gửi một khoản tiền vào ngân hàng này để có số tiền lãi hàng năm ít nhất là 20 triệu đồng.

a) Gọi \(x\) (triệu đồng) là số tiền mà bà Hoa cần gửi tiết kiệm. Hãy viết bất phương trình phù hợp với dữ liệu đề bài.

b) Hỏi số tiền mà bà Hoa cần gửi tiết kiệm ít nhất là bao nhiêu?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP