Câu hỏi:

26/11/2025 35 Lưu

(0,5 điểm) Một vòng quay Mặt Trời quay quanh trục mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách \[h\left( m \right)\] từ một cabin \(M\) trên vòng quay đến mặt đất được tính bởi công thức \[h(t) = a\sin (\frac{{2\pi }}{{15}}t - \frac{\pi }{2}) + b\]. Với \[t\] là thời gian quay của vòng quay tính bằng phút (\[t \ge 0\]). Biết rằng khi lên đến vị trí cao nhất cabin \(M\) cách mặt đất \(114,5\) m và khi xuống đến vị trí thấp nhất cabin \(M\) cách mặt đất \(0,5\) m. Tìm \[a,{\rm{ }}b\] và thời điểm cabin \(M\) đạt được chiều cao \(86\) m trong vòng quay đầu tiên tính từ thời điểm \[t = 0\] (phút).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \[ - a + b \le h(t) = a\sin (\frac{{2\pi }}{{15}}t - \frac{\pi }{2}) + b \le a + b,\forall t\].

Theo bài ra: \[\left\{ \begin{array}{l}a + b = 114,5\\ - a + b = 0,5\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a = 57\\b = 57,5\end{array} \right.\]

Suy ra \[h(t) = 57\sin (\frac{{2\pi }}{{15}}t - \frac{\pi }{2}) + 57,5\]

Do đó \[h(t) = 57\sin (\frac{{2\pi }}{{15}}t - \frac{\pi }{2}) + 57,5 = 86\]

\[ \Leftrightarrow \sin (\frac{{2\pi }}{{15}}t - \frac{\pi }{2}) = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}\frac{{2\pi }}{{15}}t - \frac{\pi }{2} = \frac{\pi }{6} + k2\pi \\\frac{{2\pi }}{{15}}t - \frac{\pi }{2} = \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 5 + 15k\\t = 10 + 15k\end{array} \right.(k \in \mathbb{Z}).\]

Vậy trong vòng quay đầu tiên cabin \(M\) đạt được chiều cao \(86\) m tại thời điểm \(t = 5\) phút hoặc \(t = 10\) phút.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \( (ảnh 1)

a) (1,0 điểm) Chứng minh \[MN//\left( {ABCD} \right).\]

Ta có \[MN\] là đường trung bình tam giác \[SAC\].

Suy ra \[MN//AC\].

Do đó: \[\left\{ \begin{array}{l}MN//AC\\MN \not\subset \left( {ABCD} \right);AC \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow MN//\left( {ABCD} \right).\]

   b) (1,0 điểm) Xác định giao tuyến của 2 mặt phẳng \[\left( {BMN} \right)\]và \[\left( {ABCD} \right).\]

Ta có B là điểm chung của 2 mặt phẳng \[\left( {BMN} \right)\]và \[\left( {ABCD} \right).\]

Lại có: \[\left\{ \begin{array}{l}MN//AC\\AC \subset \left( {ABCD} \right);MN \subset (BMN).\end{array} \right. \Rightarrow (BMN) \cap \left( {ABCD} \right) = Bx,Bx\,//MN//AC.\]

     c) (1,0 điểm) Gọi \[P\] là trung điểm \[BO\]. Xác định giao điểm \(Q\) của cạnh \(SD\) và mặt phẳng \(\left( {MNP} \right)\). Tính tỷ số \(\frac{{SQ}}{{SD}}\).

Gọi \[I\] là giao điểm của \[MN\] và \[SO\].

\(Q\) là giao điểm của \[PI\] và \[SD\].

Ta có \[Q \in PI,PI \subset (MNP) \Rightarrow Q \in (MNP).\]

Mà \[Q \in SD\]. Suy ra \(Q\) là giao điểm của \(SD\) và mặt phẳng \(\left( {MNP} \right)\).

Vì \[I\]là trung điểm \[SO\] nên \[PI\] là đường trung bình tam giác \[SBO\]. Suy ra \[PI//SB\] hay \[PQ//SB\].

Xét tam giác SBD có: \(\frac{{SQ}}{{SD}} = \frac{{BP}}{{BD}} \Rightarrow \frac{{SQ}}{{SD}} = \frac{1}{4}\).

Câu 2

A. \(BC{\rm{//}}\left( {SAD} \right)\).          
B. \(CD{\rm{//}}\left( {SAB} \right)\).                   
C. \(SA{\rm{//}}\left( {SCD} \right)\).                   
D. \(AD{\rm{//}}\left( {SBC} \right)\).

Lời giải

Chọn C

Vì \(\left\{ \begin{array}{l}S \in SA\\S \in \left( {SCD} \right)\end{array} \right. \Rightarrow SA\parallel \left( {SCD} \right)\) là sai.

Câu 3

A. \(4\).                        
B. \(2\).                        
C. \(3\).                                 
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({225^{\rm{o}}}\).                                    
B. \({172^{\rm{o}}}\);        
C. \({5^{\rm{o}}}\);   
D. \({15^{\rm{o}}}\);

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(T = \left[ {5;8} \right]\).                           
B. \(T = \left[ { - 1;1} \right]\);                 
C. \(T = \left[ { - 3;3} \right]\);                           
D. \(T = \left[ {2;8} \right]\);

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x = \alpha + k\pi ,{\rm{ }}x = \pi - \alpha + k\pi ,k \in \mathbb{Z}\).                  
B. \(x = \alpha + k\pi ,{\rm{ }}x = - \alpha + k\pi ,k \in \mathbb{Z}\).
C. \(x = \alpha + k2\pi ,{\rm{ }}x = \pi - \alpha + k2\pi ,k \in \mathbb{Z}\).             
D. \(x = \alpha + k2\pi ,{\rm{ }}x = - \alpha + k2\pi ,k \in \mathbb{Z}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( {OA,OB'} \right)\);                          
B. \(\left( {OA,OA'} \right)\);         
C. \(\left( {OA,OB} \right)\);                           
D. \(\left( {OA,OA} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP