Câu hỏi:

27/11/2025 31 Lưu

Khảo sát thời gian tập thể dục của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm như sau:

Khảo sát thời gian tập thể dục của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm như sau (ảnh 1)

Nhóm chứa mốt của mẫu số liệu trên là nhóm ứng với nửa khoảng nào dưới đây?

A. \[[20;40)\].        
B. \[[80;100)\].     
C. \[[40;60)\].  
D. \[[60;80)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Nhóm có tần số lớn nhất là nhóm chứa Mốt nên là nửa khoảng \[[40;60)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\frac{1}{2}\].         
B. \[ - 5\].    
C. \[\frac{3}{2}\].    

D. \[ - \frac{5}{2}\].

Lời giải

Chọn D

Ta có \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{3^n} - {{5.2}^{2n}}}}{{{{2.3}^n} + {2^{2n + 1}}}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{\frac{{{3^n}}}{{{4^n}}} - 5}}{{2.\frac{{{3^n}}}{{{4^n}}} + 2}} = - \frac{5}{2}\).

Lời giải

 

Cho hình lăng trụ ABCD.A'B'C'D' có tứ giác ABCD là hình thang đáy AB,CD thỏa mãn AB = 2CD (ảnh 1)

 

Cho hình lăng trụ ABCD.A'B'C'D' có tứ giác ABCD là hình thang đáy AB,CD thỏa mãn AB = 2CD (ảnh 1) 

\(\left\{ \begin{array}{l}\left( {ABB'A'} \right)\,\,{\rm{//}}\,\,\left( {CDD'C'} \right)\\\left( {MNK} \right) \cap \left( {ABB'A'} \right) = MN\\K \in \left( {MNK} \right) \cap \left( {CDD'C'} \right)\end{array} \right. \Rightarrow \left( {MNK} \right) \cap \left( {CDD'C'} \right) = KH\,\left( {KH\,\,{\rm{//}}\,MN,\,H \in DD'} \right)\).

 

b)

Cho hình lăng trụ ABCD.A'B'C'D' có tứ giác ABCD là hình thang đáy AB,CD thỏa mãn AB = 2CD (ảnh 2)

 

Gọi \(E,\,E'\) lần lượt là trung điểm của \(AB,\,CD\)\(I\) là giao điểm của \(EE'\)\(MN\), \(O\) là giao điểm của \(AC\)\(BD\); \(G\) là giao điểm của \(MK\)\(HI\).

Ta có \(I\) là trung điểm của \(MN\);

\(ADCE.A'D'C'E'\) là hình hộp.

\(O\) là trung điểm của \(AC,\,BD\); \(G\) là trung điểm của \(MK,IH\);

\(AMKC\) là hình thang có \(OG\) là đường trung bình nên \(AM + KC = 2OG\).

\(EDHI\) là hình thang có \(OG\) là đường trung bình nên \(EI + DH = 2OG\).

Suy ra \(AM + KC = EI + DH \Rightarrow \frac{{AM}}{{AA'}} + \frac{{KC}}{{CC'}} = \frac{{EI}}{{EE'}} + \frac{{DH}}{{DD'}} \Rightarrow \frac{{EI}}{{EE'}} + \frac{{DH}}{{DD'}} = \frac{5}{4}\) (*)

(Học sinh có thể nêu \(ADCE.A'D'C'E'\) là hình hộp, \(\left( {MNP} \right)\) cắt \(AA',\,EE',\,CC',DD'\) lần lượt tại \(M,K,I,H\) nên ta có: \(\frac{{AM}}{{AA'}} + \frac{{KC}}{{CC'}} = \frac{{EI}}{{EE'}} + \frac{{DH}}{{DD'}} \Rightarrow \frac{{EI}}{{EE'}} + \frac{{DH}}{{DD'}} = \frac{5}{4}\) (*)).

 

\(ABNM\) là hình thang có \(EI\) là đường trung bình nên \(AM + BN = 2EI \Rightarrow \frac{{AM}}{{AA'}} + \frac{{BN}}{{BB'}} = 2\frac{{EI}}{{EE'}} \Rightarrow \frac{{EI}}{{EE'}} = \frac{7}{{12}}\) (**)

Từ \(\left( * \right)\left( {**} \right)\) suy ra \(\frac{{DH}}{{DD'}} = \frac{2}{3}\). Suy ra \(\frac{{DH}}{{D'H}} = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP