Câu hỏi:

27/11/2025 106 Lưu

Biết \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} + ax + b}}{{2{x^2} - 7x + 3}} = \frac{1}{2}\)\(\left( {a,\,\,b\,\, \in \mathbb{R}} \right)\). Tính \(S = 2a + 3b\).

A. \(\frac{{ - 15}}{2}\).  
B. \( - \frac{{15}}{4}\). 
C. \(\frac{{ - 5}}{2}\).  
D. \(\frac{{25}}{4}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

\(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} + ax + b}}{{2{x^2} - 7x + 3}} = \frac{1}{2}\) suy ra \(x = 3\) là một nghiệm của phương trình \({x^2} + ax + b = 0\)nên \(9 + 3a + b = 0 \Rightarrow b = - 3a - 9\).

Khi đó \[\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} + ax - 3a - 9}}{{\left( {x - 3} \right)\left( {2x - 1} \right)}} = \frac{1}{2} \Leftrightarrow \mathop {\lim }\limits_{x \to 3} \frac{{\left( {x - 3} \right)\left( {x + a + 3} \right)}}{{\left( {x - 3} \right)\left( {2x - 1} \right)}} = \frac{1}{2} \Rightarrow \frac{{a + 6}}{5} = \frac{1}{2} \Rightarrow a = - \frac{7}{2}\].

Khi đó \(a = - \frac{7}{2},b = \frac{3}{2} \Rightarrow S = 2a + 3b = - \frac{5}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Ta có \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {5f\left( x \right) - 3g\left( x \right)} \right] = 5\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\mathop { - 3\lim }\limits_{x \to {x_0}} g\left( x \right) = 5.2 - 3.3 = 1\).

Lời giải

Chọn C

Nhóm có tần số lớn nhất là nhóm chứa Mốt nên là nửa khoảng \[[40;60)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{3}{2}\).      
B. \( + \infty \).         
C. \(2\).    
D. \( - \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP