Câu hỏi:

27/11/2025 11 Lưu

Tìm \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{2x - 3}}{{x - 2}}\) ta thu được kết quả là

A. \(\frac{3}{2}\).      
B. \( + \infty \).         
C. \(2\).    
D. \( - \infty \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Ta có \[x \to {2^ - } \Leftrightarrow \left\{ \begin{array}{l}x \to 2\\x < 2\end{array} \right.\] nên \(\left( {2x - 3} \right) \to 1 > 0\)\(x - 2 \to 0\) và âm do đó \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{2x - 3}}{{x - 2}} = - \infty \)

Lưu ý: Dùng MTBT.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Nhóm có tần số lớn nhất là nhóm chứa Mốt nên là nửa khoảng \[[40;60)\].

Câu 2

A. \[\frac{1}{2}\].         
B. \[ - 5\].    
C. \[\frac{3}{2}\].    

D. \[ - \frac{5}{2}\].

Lời giải

Chọn D

Ta có \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{3^n} - {{5.2}^{2n}}}}{{{{2.3}^n} + {2^{2n + 1}}}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{\frac{{{3^n}}}{{{4^n}}} - 5}}{{2.\frac{{{3^n}}}{{{4^n}}} + 2}} = - \frac{5}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP