Câu hỏi:

27/11/2025 85 Lưu

Tìm \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{2x - 3}}{{x - 2}}\) ta thu được kết quả là

A. \(\frac{3}{2}\).      
B. \( + \infty \).         
C. \(2\).    
D. \( - \infty \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Ta có \[x \to {2^ - } \Leftrightarrow \left\{ \begin{array}{l}x \to 2\\x < 2\end{array} \right.\] nên \(\left( {2x - 3} \right) \to 1 > 0\)\(x - 2 \to 0\) và âm do đó \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{2x - 3}}{{x - 2}} = - \infty \)

Lưu ý: Dùng MTBT.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Ta có \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {5f\left( x \right) - 3g\left( x \right)} \right] = 5\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\mathop { - 3\lim }\limits_{x \to {x_0}} g\left( x \right) = 5.2 - 3.3 = 1\).

Lời giải

Chọn C

Nhóm có tần số lớn nhất là nhóm chứa Mốt nên là nửa khoảng \[[40;60)\].

Câu 3

A. \(\frac{{ - 15}}{2}\).  
B. \( - \frac{{15}}{4}\). 
C. \(\frac{{ - 5}}{2}\).  
D. \(\frac{{25}}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP