Câu hỏi:

03/12/2025 7 Lưu

Cho cấp số nhân hữu hạn có công bội bằng 3 và số hạng đầu tiên bằng 5. Biết số hạng chính giữa bằng 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?

A. 17 số hạng.       
B. 18 số hạng.      

C. 9 số hạng.  

D. 16 số hạng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Ta có:

\[{u_n} = {u_1}{q^{n - 1}} \Leftrightarrow 32805 = {5.3^{n - 1}} \Leftrightarrow {3^{n - 1}} = 6561 \Leftrightarrow {3^{n - 1}} = {3^8} \Leftrightarrow n - 1 = 8 \Leftrightarrow n = 9\].

Vậy cấp số nhân đã cho có\[2n - 1 = 2.9 - 1 = 17\] số hạng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Ta có: \[q = \frac{{{u_2}}}{{{u_1}}} = \frac{9}{{81}} = \frac{1}{9}\].

Lời giải

Cho hình chóp S.ABCD. có đáy ABCD là hình bình hành tâm O (ảnh 1)

a) Xác định giao tuyến \[d\] của hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SCD} \right)\).

\(S \in \left( {SAB} \right) \cap (SCD)\)

 \[AB\parallel CD,\,\,AB \subset \left( {SAB} \right),CD \subset \left( {SCD} \right)\]

\[ \Rightarrow \left( {SAB} \right) \cap (SCD) = Sx\parallel AB\parallel CD\].

b) Gọi \(M,\,\,N\) lần lượt là trung điểm của \[SC\]\[AD\]. Chứng minh \(\left( {OMN} \right)//\left( {SAB} \right)\).

\[ON\] là đường trung bình của tam giác \(DAB \Rightarrow ON\parallel AB\)

\[OM\] là đường trung bình của tam giác \(CSA \Rightarrow OM\parallel SA\)

\( \Rightarrow \left( {OMN} \right)\parallel \left( {SAB} \right)\)

c) Gọi \[G\] là trọng tâm của tam giác \[ABC\], \[H\] là giao điểm của \[d\] và mặt phẳng \[\left( {AGM} \right)\]. Chứng minh tứ giác \[SHDC\] là hình bình hành.

 Trong \(\left( {ABCD} \right)\), gọi \(K = AG \cap CD \Rightarrow MK = \left( {AGM} \right) \cap \left( {SCD} \right)\).

\( \Rightarrow H = d \cap KM\)

Chứng minh được \(SH = CD\).

Mặt khác \(SH//CD \Rightarrow SHDC\) là hình bình hành.

Câu 3

A. \(q = 4\).         
B. \(q = 6\).   
C. \(q = 12\) 
D. \(q = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Dãy số \(\left( {{u_n}} \right)\) bị chặn trên bởi 1. 
B. Dãy số \(\left( {{u_n}} \right)\) là dãy số giảm.
C. Dãy số \(\left( {{u_n}} \right)\) là dãy số tăng. 
D. \({u_1} = 1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP