Cho cấp số cộng \[\left( {{u_n}} \right)\] có \[{u_1} = - 5\] và \[d = 3.\] Số 100 là số hạng thứ mấy của cấp số cộng đã cho?
Cho cấp số cộng \[\left( {{u_n}} \right)\] có \[{u_1} = - 5\] và \[d = 3.\] Số 100 là số hạng thứ mấy của cấp số cộng đã cho?
Quảng cáo
Trả lời:
Chọn A
Ta có \({u_n} = {u_1} + \left( {n - 1} \right)d \Leftrightarrow 100 = - 5 + \left( {n - 1} \right).3 \Leftrightarrow n = 36\),
Vậy Số 100 là số hạng thứ \(36\) của cấp số cộng đã cho.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Ta có \(\mathop {\lim }\limits_{x \to {1^ + }} \left( {2x + 1} \right) = 3\), \(\mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} \right) = 0\). Vì \(x \to {1^ + }\) nên \(x > 1 \Rightarrow x - 1 > 0\).
Suy ra \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x + 1}}{{x - 1}} = + \infty \).
Câu 2
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.