Cho tam giác \[ABC\] cân tại đỉnh \[A\], biết độ dài cạnh đáy \[BC\], đường cao \[AH\] và cạnh bên \[AB\] theo thứ tự lập thành cấp số nhân với công bội \[q\]. Tính giá trị của \[{q^2}\].
Cho tam giác \[ABC\] cân tại đỉnh \[A\], biết độ dài cạnh đáy \[BC\], đường cao \[AH\] và cạnh bên \[AB\] theo thứ tự lập thành cấp số nhân với công bội \[q\]. Tính giá trị của \[{q^2}\].
Quảng cáo
Trả lời:
Đặt \[BC = a;\,\,AB = AC = b;AH = h\]. Theo giả thiết ta có \[a,\,\,h,\,\,b\] lập cấp số nhân, suy ra
\[{h^2} = ab.\] Mặt khác tam giác \[ABC\] cân tại đỉnh \[A\] nên \[{h^2} = {m_a}^2 = \frac{{{b^2} + {b^2}}}{2} - \frac{{{a^2}}}{4}\].
Do đó \[\frac{{{b^2} + {b^2}}}{2} - \frac{{{a^2}}}{4} = ab \Leftrightarrow {a^2} + 4ab - 4{b^2} = 0 \Leftrightarrow a = \left( {2\sqrt 2 - 2} \right)b\].
Lại có \[b = {q^2}a\] nên suy ra \[{q^2} = \frac{b}{a} = \frac{1}{{2\sqrt 2 - 2}} = \frac{{2\sqrt 2 + 2}}{4} = \frac{{\sqrt 2 + 1}}{2}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Ta có \(\mathop {\lim }\limits_{x \to {1^ + }} \left( {2x + 1} \right) = 3\), \(\mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} \right) = 0\). Vì \(x \to {1^ + }\) nên \(x > 1 \Rightarrow x - 1 > 0\).
Suy ra \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x + 1}}{{x - 1}} = + \infty \).
Câu 2
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.