Câu hỏi:

04/12/2025 35 Lưu

Cho tam giác \[ABC\] cân tại đỉnh \[A\], biết độ dài cạnh đáy \[BC\], đường cao \[AH\] và cạnh bên \[AB\] theo thứ tự lập thành cấp số nhân với công bội \[q\]. Tính giá trị của \[{q^2}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đặt \[BC = a;\,\,AB = AC = b;AH = h\]. Theo giả thiết ta có \[a,\,\,h,\,\,b\] lập cấp số nhân, suy ra

\[{h^2} = ab.\] Mặt khác tam giác \[ABC\] cân tại đỉnh \[A\] nên \[{h^2} = {m_a}^2 = \frac{{{b^2} + {b^2}}}{2} - \frac{{{a^2}}}{4}\].

Do đó \[\frac{{{b^2} + {b^2}}}{2} - \frac{{{a^2}}}{4} = ab \Leftrightarrow {a^2} + 4ab - 4{b^2} = 0 \Leftrightarrow a = \left( {2\sqrt 2 - 2} \right)b\].

Lại có \[b = {q^2}a\] nên suy ra \[{q^2} = \frac{b}{a} = \frac{1}{{2\sqrt 2 - 2}} = \frac{{2\sqrt 2 + 2}}{4} = \frac{{\sqrt 2 + 1}}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[ + \infty \].           
B. \[ - 1\].           
C. \[2\].      
D. \[ - \infty \]

Lời giải

Chọn A

Ta có \(\mathop {\lim }\limits_{x \to {1^ + }} \left( {2x + 1} \right) = 3\), \(\mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} \right) = 0\). Vì \(x \to {1^ + }\) nên \(x > 1 \Rightarrow x - 1 > 0\).

Suy ra \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x + 1}}{{x - 1}} = + \infty \).

Lời giải

a) \(\lim {\mkern 1mu} \left( {\sqrt {4{n^2} + 1} - 3n} \right) = \lim \,\,n\left( {\sqrt {4 + \frac{1}{{{n^2}}}} - 3} \right)\).

\[\lim \,\,n = + \infty \]\[\lim \left( {\sqrt {4 + \frac{1}{{{n^2}}}} - 3} \right) = 2 - 3 = - 1 < 0\].

Từ đó ta có \[\lim \,\left( {\sqrt {4{n^2} + 1} - 3n} \right) = - \infty \].

b) \(\mathop {\lim }\limits_{x \to 3} {\mkern 1mu} \frac{{\sqrt {x + 1} - 2}}{{9 - {x^2}}} = \) \(\mathop {\lim }\limits_{x \to 3} {\mkern 1mu} \frac{{(\sqrt {x + 1} - 2)(\sqrt {x + 1} + 2)}}{{(9 - {x^2})(\sqrt {x + 1} + 2)}}\) \( = \mathop {\lim }\limits_{x \to 3} {\mkern 1mu} \frac{{x - 3}}{{(9 - {x^2})(\sqrt {x + 1} + 2)}}\)

\[ = \mathop {\lim }\limits_{x \to 3} \frac{{x - 3}}{{(3 - x)(3 + x)(\sqrt {x + 1} + 2)}}\] \[ = \mathop {\lim }\limits_{x \to 3} \frac{{ - 1}}{{(3 + x)(\sqrt {x + 1} + 2)}}\] \[ = \frac{{ - 1}}{{(3 + 3)(\sqrt {3 + 1} + 2)}} = - \frac{1}{{24}}\].

c) Hàm số liên tục trên đoạn \(\left[ {0;6} \right] \Leftrightarrow \) hàm số liên tục trên khoảng \(\left( {0;6} \right)\) \(\mathop {\lim }\limits_{x \to {0^ + }} = f\left( 0 \right)\), \(\mathop {\lim }\limits_{x \to {6^ - }} = f\left( 6 \right)\).

Ta cóa) Tính giới hạn sau: Lim căn {4{n^2} + 1}  - 3n) (ảnh 1) \(\mathop {\lim }\limits_{x \to {6^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {6^ - }} \left( {1 + m} \right) = 1 + m = f\left( 6 \right)\).

Khi \[x \in \left[ {0;4} \right]\] thì \[f\left( x \right) = \sqrt x \] nên hàm số liên tục trên khoảng \(\left( {0;4} \right)\).

Khi \[x \in \left( {4;6} \right]\] thì \[f\left( x \right) = 1 + m\] nên hàm số liên tục trên khoảng \(\left( {4;6} \right)\).

Vậy, hàm số liên tục trên đoạn \(\left[ {0;6} \right] \Leftrightarrow \) hàm số liên tục tại diểm \(x = 4\) \( \Leftrightarrow \mathop {\lim }\limits_{x \to {4^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {4^ + }} f\left( x \right)\) \( \Leftrightarrow m + 1 = \sqrt 4 \Leftrightarrow m = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Nếu \(\left( \alpha \right)\parallel \left( \beta \right)\)\(a \subset \left( \alpha \right),{\rm{ }}b \subset \left( \beta \right)\) thì \(a\parallel b.\)
B. Nếu \(a\parallel \left( \alpha \right)\)\(b\parallel \left( \beta \right)\) thì \(a\parallel b.\)
C. Nếu \(\left( \alpha \right)\parallel \left( \beta \right)\)\(a \subset \left( \alpha \right)\) thì \(a\parallel \left( \beta \right).\)
D. Nếu \(a\parallel b\)\(a \subset \left( \alpha \right),{\rm{ }}b \subset \left( \beta \right)\) thì \(\left( \alpha \right)\parallel \left( \beta \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left( {BCA'} \right)\].        
B. \[\left( {BC'D} \right)\].     
C. \[\left( {A'C'C} \right)\]. 
D. \[\left( {BDA'} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP