Quảng cáo
Trả lời:
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi \(K\) là giao điểm của \(B'C\) và \(BC'\), \(I\) là trung điểm của \(AB\).
Do \(HB' = AI;HB'{\rm{//}}AI\) nên tứ giác \(AHB'I\) là hình bình hành hay\(AH{\rm{//}}B'I\)(1).
Mặt khác KI là đường trung bình trong tam giác ABC’ nên \(KI{\rm{//}}AC'\)(2)
Ta có AH và AC’ cắt nhau trong (AHC’); B’I và KI cắt nhau trong (B’CI) (3). Từ (1), (2), (3)\( \Rightarrow \left( {AHC'} \right){\rm{//}}\left( {B'CI} \right)\)
Mà\(B'C \subset \left( {B'CI} \right)\) nên\(B'C{\rm{//}}\left( {AHC'} \right)\).
Cách 2:

Trong mặt phẳng (ACC’A’), gọi O là giao điểm của AC’ và A’C. Vì tứ giác ACC’A’ là hình bình hành nên O là trung điểm của CA’.
Trong tam giác A’B’C ta có HO là đường trung bình nên HO // B’C
Ta có \(\left\{ \begin{array}{l}B'C//HO\\HO \subset (AHC')\\B'C \not\subset (AHC')\end{array} \right. \Rightarrow B'C//(AHC')\).
Lời giải
a) Gọi un là lượng thuốc trong cơ thể bệnh nhân sau khi uống ở ngày thứ n
Ta có:
Lượng thuốc sau khi uống ở ngày thứ 1 là: u1 = 150 mg
Lượng thuốc sau khi uống ở ngày thứ 2 là: u2 = 6%.u1 + 150 = 6%.150 + 150 = 150(1+0,06)
Lượng thuốc sau khi uống ở ngày thứ 3 là:
u3 = 6%.u2 + 150 = 0,06.150.(1+0,06) + 150 = 150(1+0,06 + 0,062)
Lượng thuốc sau khi uống ở ngày thứ 4 là: u4 = 6%.u3 + 150 = 150(1+0,06 + 0,062 + 0,063)
Lượng thuốc sau khi uống ở ngày thứ 5 là:
u5 = 6%.u4 + 150 = 150(1+0,06 + 0,062 + 0,063+ 0,064) \( \approx \)159,574(mg).
b) Nếu bệnh nhân sử dụng thuốc trong thời gian dài, lượng thuốc trong cơ thể được ước lượng bởi \[S = 150(1 + 0,06 + 0,{06^2} + ... + 0,{06^n} + ...)\].
Ta có \[1 + 0,06 + 0,{06^2} + ... + 0,{06^n} + ...\]là tổng của một cấp số nhân lùi vô hạn
với công bội q = 0,06 và số hạng đầu u1 = 1.
Do đó \[S = 150(1 + 0,06 + 0,{06^2} + ... + 0,{06^n} + ...) = 150.\frac{1}{{1 - 0,06}} = 150.\frac{{50}}{{47}} \approx 159,6(mg).\]
Vậy lượng thuốc trong cơ thể được ước lượng là 159,6 (mg) nếu dùng lâu dài.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
