Biết \[x \ne --y;\] \[y \ne --z;\] \[z \ne --x,\] rút gọn biểu thức sau:
\(A = \frac{{{x^2} - yz}}{{\left( {x + y} \right)\left( {x + z} \right)}} + \frac{{{y^2} - xz}}{{\left( {y + x} \right)\left( {y + z} \right)}} + \frac{{{z^2} - xy}}{{\left( {z + x} \right)\left( {z + y} \right)}}.\)
Biết \[x \ne --y;\] \[y \ne --z;\] \[z \ne --x,\] rút gọn biểu thức sau:
\(A = \frac{{{x^2} - yz}}{{\left( {x + y} \right)\left( {x + z} \right)}} + \frac{{{y^2} - xz}}{{\left( {y + x} \right)\left( {y + z} \right)}} + \frac{{{z^2} - xy}}{{\left( {z + x} \right)\left( {z + y} \right)}}.\)
Quảng cáo
Trả lời:
Hướng dẫn giải
Với \[x \ne --y;\] \[y \ne --z;\] \[z \ne --x,\] ta có:
\(A = \frac{{{x^2} - yz}}{{\left( {x + y} \right)\left( {x + z} \right)}} + \frac{{{y^2} - xz}}{{\left( {y + x} \right)\left( {y + z} \right)}} + \frac{{{z^2} - xy}}{{\left( {z + x} \right)\left( {z + y} \right)}}\)
\( = \frac{{\left( {{x^2} - yz} \right)\left( {y + z} \right)}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}} + \frac{{\left( {{y^2} - xz} \right)\left( {z + x} \right)}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}} + \frac{{\left( {{z^2} - xy} \right)\left( {x + y} \right)}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}}\)
\( = \frac{{{x^2}y + {x^2}z - {y^2}z - y{z^2} + {y^2}z + x{y^2} - x{z^2} - {x^2}z + {z^2}x + {z^2}y - {x^2}y - x{y^2}}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}}\)
\( = \frac{0}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}} = 0.\)
Vậy \(A = 0.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Ta có \(M = \frac{{14}}{{{x^2} - 2x + 4}} = \frac{{14}}{{\left( {{x^2} - 2x + 1} \right) + 3}} = \frac{{14}}{{{{\left( {x - 1} \right)}^2} + 3}}.\)
Với mọi \(x,\) ta luôn có \({\left( {x - 1} \right)^2} \ge 0\) nên \({\left( {x - 1} \right)^2} + 3 \ge 0\)
Suy ra \(\frac{{14}}{{{{\left( {x - 1} \right)}^2} + 3}} \le \frac{{14}}{3},\) hay \(M \le \frac{{14}}{3}.\)
Dấu “=” xảy ra khi và chỉ khi \({\left( {x - 1} \right)^2} = 0,\) tức là \(x = 1.\)
Vậy giá trị lớn nhất của biểu thức \(M\) là \(\frac{{14}}{3}\) tại \(x = 1.\)
b) Ta có \(N = \frac{{11}}{{12 - 4x - {x^2}}} = \frac{{11}}{{ - \left( {{x^2} + 4x + 4} \right) + 16}} = \frac{{11}}{{ - {{\left( {x + 2} \right)}^2} + 16}}.\)
Với mọi \(x,\) ta luôn có \({\left( {x + 2} \right)^2} \ge 0\) nên \( - {\left( {x + 2} \right)^2} + 16 \le 16\)
Suy ra \(\frac{{11}}{{ - {{\left( {x + 2} \right)}^2} + 16}} \ge \frac{{11}}{{16}},\) hay \(N \ge \frac{{11}}{{16}}.\)
Dấu “=” xảy ra khi và chỉ khi \({\left( {x + 2} \right)^2} = 0,\) tức là \(x = - 2.\)
Vậy giá trị nhỏ nhất của biểu thức \(N\) là \(\frac{{11}}{{16}}\) tại \(x = - 2.\)
Lời giải
Hướng dẫn giải
Điều kiện \(a,\,\,b,\,\,c \ne 0.\)
Với \[a + b + c = 0,\] ta có \(a + b = - c;\,\,b + c = - a;\,\,c + a = - b.\)
Ta có \(C = \left( {\frac{{a - b}}{c} + \frac{{b - c}}{a} + \frac{{c - a}}{b}} \right)\left( {\frac{c}{{a - b}} + \frac{a}{{b - c}} + \frac{b}{{c - a}}} \right)\)
\( = \underbrace {\left( {\frac{{a - b}}{c} + \frac{{b - c}}{a} + \frac{{c - a}}{b}} \right) \cdot \frac{c}{{a - b}}}_M + \underbrace {\left( {\frac{{a - b}}{c} + \frac{{b - c}}{a} + \frac{{c - a}}{b}} \right) \cdot \frac{a}{{b - c}}}_N + \underbrace {\left( {\frac{{a - b}}{c} + \frac{{b - c}}{a} + \frac{{c - a}}{b}} \right) \cdot \frac{b}{{c - a}}}_P\)
Xét \(M = \left( {\frac{{a - b}}{c} + \frac{{b - c}}{a} + \frac{{c - a}}{b}} \right) \cdot \frac{c}{{a - b}}\)
\( = 1 + \frac{c}{{a - b}} \cdot \left( {\frac{{b - c}}{a} + \frac{{c - a}}{b}} \right)\)\( = 1 + \frac{c}{{a - b}} \cdot \frac{{{b^2} - bc + ac - {a^2}}}{{ab}}\)
\( = 1 + \frac{c}{{a - b}} \cdot \frac{{\left( {b - a} \right)\left( {b + a} \right) - c\left( {b - a} \right)}}{{ab}}\)\( = 1 + \frac{c}{{a - b}} \cdot \frac{{\left( {b - a} \right)\left( {b + a - c} \right)}}{{ab}}\)
\[ = 1 + \frac{c}{{a - b}} \cdot \frac{{ - \left( {a - b} \right)\left( { - c - c} \right)}}{{ab}}\]\[ = 1 + \frac{{c \cdot 2c}}{{ab}} = 1 + \frac{{2{c^3}}}{{abc}}.\]
Tương tự, \(N = 1 + \frac{{2{a^3}}}{{abc}};\,\,P = 1 + \frac{{2{b^3}}}{{abc}}.\)
Khi đó \(C = M + N + P = 1 + \frac{{2{c^3}}}{{abc}} + 1 + \frac{{2{a^3}}}{{abc}} + 1 + \frac{{2{b^3}}}{{abc}} = 3 + \frac{{2\left( {{a^3} + {b^3} + {c^3}} \right)}}{{abc}}.\)
Mặt khác, do \[a + b + c = 0\] nên ta có \[{\left( {a + b + c} \right)^3} = 0\]
Suy ra \[{\left( {a + b} \right)^3} + {c^3} + 3\left( {a + b} \right)c\left( {a + b + c} \right) = 0\]
\[{a^3} + {b^3} + 3ab\left( {a + b} \right) + {c^3} + 3\left( {a + b} \right)c\left( {a + b + c} \right) = 0\]
\[{a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left( {ab + ac + bc + {c^2}} \right) = 0\]
\[{a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left[ {a\left( {b + c} \right) + c\left( {b + c} \right)} \right] = 0\]
\[{a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left( {b + c} \right)\left( {a + c} \right) = 0\]
\[{a^3} + {b^3} + {c^3} + 3\left( { - c} \right)\left( { - a} \right)\left( { - b} \right) = 0\]
\[{a^3} + {b^3} + {c^3} - 3abc = 0\]
\[{a^3} + {b^3} + {c^3} = 3abc.\]
Vậy \(C = 3 + \frac{{2 \cdot \left( {3abc} \right)}}{{abc}} = 3 + 6 = 9.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
