Câu hỏi:

05/12/2025 6 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\). Hai mặt phẳng \(\left( {SAC} \right),\left( {SBD} \right)\) cùng vuông góc với đáy. Khẳng định nào sau đây đúng?    

A. \(AC \bot \left( {SBD} \right)\).                
B. \(SO \bot \left( {ABCD} \right)\).  
C. \(BD \bot \left( {SAC} \right)\).                          
D. \(SA \bot \left( {ABCD} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\left. \begin{array}{l}\left( {SAC} \right) \bot \left( {ABCD} \right)\\\left( {SBD} \right) \bot \left( {ABCD} \right)\\\left( {SAC} \right) \cap \left( {SBD} \right) = SO\end{array} \right\} \Rightarrow SO \bot \left( {ABCD} \right)\). Chọn B. (ảnh 1)

Ta có \(\left. \begin{array}{l}\left( {SAC} \right) \bot \left( {ABCD} \right)\\\left( {SBD} \right) \bot \left( {ABCD} \right)\\\left( {SAC} \right) \cap \left( {SBD} \right) = SO\end{array} \right\} \Rightarrow SO \bot \left( {ABCD} \right)\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp \(S.ABCD\) (ảnh 1)

a) Vì \(\Delta SAB\) đều \( \Rightarrow SH \bot AB\)\(\left( {SAB} \right) \bot \left( {ABCD} \right) \Rightarrow SH \bot \left( {ABCD} \right)\).

\(\Delta SAB\) đều cạnh \(a\) nên \(SH = \frac{{a\sqrt 3 }}{2}\); \({S_{ABCD}} = AB \cdot BC \cdot \sin \widehat {ABC} = \frac{{{a^2}\sqrt 3 }}{2}\).

Khi đó \({V_{S.ABCD}} = \frac{1}{3} \cdot \frac{{a\sqrt 3 }}{2} \cdot \frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}}}{4}\).

b) Dễ thấy \(\Delta ABC\) đều \( \Rightarrow AC = BC = a\). Suy ra các tam giác \(SAC\)\(SBC\) lần lượt cân tại \(A\)\(B\).

Gọi \(I\) là trung điểm của \(SC\). Suy ra \(AI \bot SC\)\(BI \bot SC\).

Do đó \(\widehat {AIB}\) là góc phẳng nhị diện \(\left[ {A,SC,B} \right]\).

Ta có \(S{C^2} = S{H^2} + C{H^2} = \frac{{3{a^2}}}{2} \Rightarrow S{I^2} = I{C^2} = \frac{{3{a^2}}}{8}\).

\(I{A^2} = S{A^2} - S{I^2} = \frac{{5{a^2}}}{8}\).

Tương tự \(I{B^2} = \frac{{5{a^2}}}{8}\).

Khi đó \(\cos \alpha = \cos \widehat {AIB} = \frac{{I{A^2} + I{B^2} - A{B^2}}}{{2IA \cdot IB}} = \frac{1}{5}\).

c) Ta có \(\Delta ACD\) đều \( \Rightarrow AN \bot CD \Rightarrow AN \bot AB \Rightarrow AN \bot \left( {SAB} \right) \Rightarrow \left( {SAN} \right) \bot \left( {SAB} \right)\).

\(\Delta SAB\) đều \( \Rightarrow BM \bot SA \Rightarrow BM \bot \left( {SAN} \right)\).

Dựng \(MK \bot SN\) tại \(K\)\( \Rightarrow MK\) là đoạn vuông góc chung của \(BM\)\(SN\).

Khi đó \(d\left( {BM,SN} \right) = MK\).

Ta có \(MK = MS \cdot \sin \widehat {MSK} = MS \cdot \frac{{AN}}{{SN}} = MS \cdot \frac{{AN}}{{\sqrt {S{A^2} + A{N^2}} }} = \frac{a}{2} \cdot \frac{{\frac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}} }} = \frac{{a\sqrt {21} }}{{14}}\).

Vậy \(d\left( {BM,SN} \right) = \frac{{a\sqrt {21} }}{{14}}\).

Lời giải

Đáp án: a) Đúng;    (ảnh 1)

\(ABCD\) là hình vuông tâm \(O\), cạnh \(2\) nên \(AO = \frac{{AC}}{2} = \sqrt 2 \).

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AO\).

Xét tam giác vuông \(SAO\), có \(SA = \sqrt {S{O^2} - A{O^2}} = \sqrt {11 - 2} = 3\).

Thể tích \({V_{S.ABCD}} = \frac{1}{3} \cdot SA \cdot {S_{ABCD}} = \frac{1}{3} \cdot 3 \cdot {2^2} = 4\).

Trả lời: 4.

Câu 3

A. \(a\sqrt 5 \).            
B. \(a\sqrt {30} \).       
C. \(\frac{{a\sqrt 5 }}{2}\). 
D. \(\frac{{a\sqrt {30} }}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Hình lăng trụ.         
B. Hình chóp.              
C. Hình chóp đều.                                  
D. Hình chóp cụt đều.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{2}{{\sqrt 3 }}\).                               
B. \(\sqrt 2 \). 
C. \(\frac{1}{{\sqrt 2 }}\).                               
D. \(\frac{1}{{2\sqrt 3 }}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(a\sqrt 3 \).            
B. \(a\sqrt 5 \).            
C. \(2a\).                               
D. \(a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(2{a^3}\sqrt 3 \).  
B. \(\frac{{2{a^3}\sqrt 3 }}{3}\).                             
C. \(\frac{{{a^3}\sqrt 3 }}{2}\).                             
D. \(\frac{{{a^3}\sqrt 3 }}{6}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP