Câu hỏi:

05/12/2025 6 Lưu

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh bên bằng \(2a\), cạnh đáy bằng \(a\). Gọi \(O\) là giao điểm của \(AC\)\(BD\).

a) Diện tích đáy của khối chóp là \(2{a^3}\).
Đúng
Sai
b) Chiều cao của khối chóp \(S.ABCD\)\(SO\).
Đúng
Sai
c) Thể tích của khối chóp \(S.ABCD\) bằng \(\frac{{{a^3}\sqrt {14} }}{6}\).
Đúng
Sai
d) Gọi \(P\) là trung điểm của \(SA\), khi đó \({V_{P.OAB}} = \frac{1}{8}{V_{S.ABCD}}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: a) Sai;    b) (ảnh 1)

a) \({S_{ABCD}} = {a^2}\).

b) Vì \(S.ABCD\) là hình chóp đều nên \(SO \bot \left( {ABCD} \right)\).

c) Ta có \(AO = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\).

Xét \(\Delta SOA\) vuông tại \(O\), \(SO = \sqrt {S{A^2} - A{O^2}} = \sqrt {4{a^2} - \frac{{2{a^2}}}{4}} = \frac{{a\sqrt {14} }}{2}\).

Khi đó \({V_{S.ABCD}} = \frac{1}{3}SO \cdot {S_{ABCD}} = \frac{1}{3} \cdot \frac{{a\sqrt {14} }}{2} \cdot {a^2} = \frac{{{a^3}\sqrt {14} }}{6}\).

d) Vì \(P\) là trung điểm của \(SA\) nên \(d\left( {P,\left( {ABCD} \right)} \right) = \frac{1}{2}d\left( {S,\left( {ABCD} \right)} \right) = \frac{1}{2}SO\).

\({S_{AOB}} = \frac{1}{4}{S_{ABCD}}\).

Do đó \({V_{P.AOB}} = \frac{1}{3} \cdot \frac{1}{2}SO \cdot \frac{1}{4}{S_{ABCD}} = \frac{1}{8} \cdot \frac{1}{3}SO \cdot {S_{ABCD}} = \frac{1}{8}{V_{S.ABCD}}\).

Đáp án: a) Sai;    b) Đúng;    c) Đúng;     d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp \(S.ABCD\) (ảnh 1)

a) Vì \(\Delta SAB\) đều \( \Rightarrow SH \bot AB\)\(\left( {SAB} \right) \bot \left( {ABCD} \right) \Rightarrow SH \bot \left( {ABCD} \right)\).

\(\Delta SAB\) đều cạnh \(a\) nên \(SH = \frac{{a\sqrt 3 }}{2}\); \({S_{ABCD}} = AB \cdot BC \cdot \sin \widehat {ABC} = \frac{{{a^2}\sqrt 3 }}{2}\).

Khi đó \({V_{S.ABCD}} = \frac{1}{3} \cdot \frac{{a\sqrt 3 }}{2} \cdot \frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}}}{4}\).

b) Dễ thấy \(\Delta ABC\) đều \( \Rightarrow AC = BC = a\). Suy ra các tam giác \(SAC\)\(SBC\) lần lượt cân tại \(A\)\(B\).

Gọi \(I\) là trung điểm của \(SC\). Suy ra \(AI \bot SC\)\(BI \bot SC\).

Do đó \(\widehat {AIB}\) là góc phẳng nhị diện \(\left[ {A,SC,B} \right]\).

Ta có \(S{C^2} = S{H^2} + C{H^2} = \frac{{3{a^2}}}{2} \Rightarrow S{I^2} = I{C^2} = \frac{{3{a^2}}}{8}\).

\(I{A^2} = S{A^2} - S{I^2} = \frac{{5{a^2}}}{8}\).

Tương tự \(I{B^2} = \frac{{5{a^2}}}{8}\).

Khi đó \(\cos \alpha = \cos \widehat {AIB} = \frac{{I{A^2} + I{B^2} - A{B^2}}}{{2IA \cdot IB}} = \frac{1}{5}\).

c) Ta có \(\Delta ACD\) đều \( \Rightarrow AN \bot CD \Rightarrow AN \bot AB \Rightarrow AN \bot \left( {SAB} \right) \Rightarrow \left( {SAN} \right) \bot \left( {SAB} \right)\).

\(\Delta SAB\) đều \( \Rightarrow BM \bot SA \Rightarrow BM \bot \left( {SAN} \right)\).

Dựng \(MK \bot SN\) tại \(K\)\( \Rightarrow MK\) là đoạn vuông góc chung của \(BM\)\(SN\).

Khi đó \(d\left( {BM,SN} \right) = MK\).

Ta có \(MK = MS \cdot \sin \widehat {MSK} = MS \cdot \frac{{AN}}{{SN}} = MS \cdot \frac{{AN}}{{\sqrt {S{A^2} + A{N^2}} }} = \frac{a}{2} \cdot \frac{{\frac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}} }} = \frac{{a\sqrt {21} }}{{14}}\).

Vậy \(d\left( {BM,SN} \right) = \frac{{a\sqrt {21} }}{{14}}\).

Câu 2

A. \(a\sqrt 5 \).            
B. \(a\sqrt {30} \).       
C. \(\frac{{a\sqrt 5 }}{2}\). 
D. \(\frac{{a\sqrt {30} }}{5}\).

Lời giải

 

Vì \(ABCD\) là hình vuông nên \(B (ảnh 1)

\(BO \bot AC,BO \bot AA' \Rightarrow BO \bot \left( {ACC'A'} \right)\).

Do đó \(d\left( {B,\left( {ACC'A'} \right)} \right) = BO = \frac{{BD}}{2} = \frac{{\sqrt {2{a^2} + 3{a^2}} }}{2} = \frac{{a\sqrt 5 }}{2}\). Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(a\sqrt 3 \).            
B. \(a\sqrt 5 \).            
C. \(2a\).                               
D. \(a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{2}{{\sqrt 3 }}\).                               
B. \(\sqrt 2 \). 
C. \(\frac{1}{{\sqrt 2 }}\).                               
D. \(\frac{1}{{2\sqrt 3 }}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(27{a^3}\).            
B. \(9{a^3}\).              
C. \(6{a^3}\).                       
D. \(3{a^3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(2{a^3}\sqrt 3 \).  
B. \(\frac{{2{a^3}\sqrt 3 }}{3}\).                             
C. \(\frac{{{a^3}\sqrt 3 }}{2}\).                             
D. \(\frac{{{a^3}\sqrt 3 }}{6}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP