Câu hỏi:

05/12/2025 6 Lưu

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(AB = a,BC = 2a\), cạnh bên \(SA\) vuông góc với mặt phẳng đáy. Góc giữa \(SB\) và mặt phẳng đáy bằng \(60^\circ \). Giả sử thể tích của khối chóp \(S.ABC\) bằng \(\frac{{\sqrt k {a^3}}}{k}\). Tìm giá trị \(k\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp \(S.ABC\) có đáy \(AB (ảnh 1)

\(SA \bot \left( {ABC} \right)\) nên \(AB\) là hình chiếu vuông góc của \(SB\) lên mặt phẳng \(\left( {ABC} \right)\).

Khi đó \(\left( {SB,\left( {ABC} \right)} \right) = \left( {SB,AB} \right) = \widehat {SBA} = 60^\circ \).

Xét \(\Delta SAB\) vuông tại \(A\), có \(SA = AB \cdot \tan 60^\circ = a\sqrt 3 \).

Khi đó \({V_{S.ABC}} = \frac{1}{3}SA \cdot {S_{ABC}} = \frac{1}{3} \cdot a\sqrt 3 \cdot \frac{1}{2} \cdot a \cdot 2a = \frac{{{a^3}\sqrt 3 }}{3}\). Suy ra \(k = 3\).

Trả lời: 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp \(S.ABCD\) (ảnh 1)

a) Vì \(\Delta SAB\) đều \( \Rightarrow SH \bot AB\)\(\left( {SAB} \right) \bot \left( {ABCD} \right) \Rightarrow SH \bot \left( {ABCD} \right)\).

\(\Delta SAB\) đều cạnh \(a\) nên \(SH = \frac{{a\sqrt 3 }}{2}\); \({S_{ABCD}} = AB \cdot BC \cdot \sin \widehat {ABC} = \frac{{{a^2}\sqrt 3 }}{2}\).

Khi đó \({V_{S.ABCD}} = \frac{1}{3} \cdot \frac{{a\sqrt 3 }}{2} \cdot \frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}}}{4}\).

b) Dễ thấy \(\Delta ABC\) đều \( \Rightarrow AC = BC = a\). Suy ra các tam giác \(SAC\)\(SBC\) lần lượt cân tại \(A\)\(B\).

Gọi \(I\) là trung điểm của \(SC\). Suy ra \(AI \bot SC\)\(BI \bot SC\).

Do đó \(\widehat {AIB}\) là góc phẳng nhị diện \(\left[ {A,SC,B} \right]\).

Ta có \(S{C^2} = S{H^2} + C{H^2} = \frac{{3{a^2}}}{2} \Rightarrow S{I^2} = I{C^2} = \frac{{3{a^2}}}{8}\).

\(I{A^2} = S{A^2} - S{I^2} = \frac{{5{a^2}}}{8}\).

Tương tự \(I{B^2} = \frac{{5{a^2}}}{8}\).

Khi đó \(\cos \alpha = \cos \widehat {AIB} = \frac{{I{A^2} + I{B^2} - A{B^2}}}{{2IA \cdot IB}} = \frac{1}{5}\).

c) Ta có \(\Delta ACD\) đều \( \Rightarrow AN \bot CD \Rightarrow AN \bot AB \Rightarrow AN \bot \left( {SAB} \right) \Rightarrow \left( {SAN} \right) \bot \left( {SAB} \right)\).

\(\Delta SAB\) đều \( \Rightarrow BM \bot SA \Rightarrow BM \bot \left( {SAN} \right)\).

Dựng \(MK \bot SN\) tại \(K\)\( \Rightarrow MK\) là đoạn vuông góc chung của \(BM\)\(SN\).

Khi đó \(d\left( {BM,SN} \right) = MK\).

Ta có \(MK = MS \cdot \sin \widehat {MSK} = MS \cdot \frac{{AN}}{{SN}} = MS \cdot \frac{{AN}}{{\sqrt {S{A^2} + A{N^2}} }} = \frac{a}{2} \cdot \frac{{\frac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}} }} = \frac{{a\sqrt {21} }}{{14}}\).

Vậy \(d\left( {BM,SN} \right) = \frac{{a\sqrt {21} }}{{14}}\).

Câu 2

A. \(a\sqrt 5 \).            
B. \(a\sqrt {30} \).       
C. \(\frac{{a\sqrt 5 }}{2}\). 
D. \(\frac{{a\sqrt {30} }}{5}\).

Lời giải

 

Vì \(ABCD\) là hình vuông nên \(B (ảnh 1)

\(BO \bot AC,BO \bot AA' \Rightarrow BO \bot \left( {ACC'A'} \right)\).

Do đó \(d\left( {B,\left( {ACC'A'} \right)} \right) = BO = \frac{{BD}}{2} = \frac{{\sqrt {2{a^2} + 3{a^2}} }}{2} = \frac{{a\sqrt 5 }}{2}\). Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(a\sqrt 3 \).            
B. \(a\sqrt 5 \).            
C. \(2a\).                               
D. \(a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{2}{{\sqrt 3 }}\).                               
B. \(\sqrt 2 \). 
C. \(\frac{1}{{\sqrt 2 }}\).                               
D. \(\frac{1}{{2\sqrt 3 }}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(27{a^3}\).            
B. \(9{a^3}\).              
C. \(6{a^3}\).                       
D. \(3{a^3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( {ABCD} \right)\).                           
B. \(\left( {SAC} \right)\).             
C. \(\left( {SBC} \right)\).                          
D. \(\left( {SAB} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP