Bác An gửi \(320\) triệu đồng vào ngân hàng MSB và VietinBank theo hình thức lãi kép. Số tiền thứ nhất gửi vào ngân hàng MSB với lãi suất \(2,1\% \) một quý (3 tháng) trong thời gian \(15\) tháng. Số tiền còn lại gửi vào ngân hàng VietinBank với lãi suất \(0,73\% \) một tháng trong thời gian \(9\) tháng. Biết tổng số tiền lãi Bác An nhận được ở hai ngân hàng là \(26670725,95\) đồng. Hỏi số tiền bác An lần lượt gửi ở hai ngân hàng \[MSB\] và VietinBank là bao nhiêu (số tiền được làm tròn tới hàng đơn vị)?
Bác An gửi \(320\) triệu đồng vào ngân hàng MSB và VietinBank theo hình thức lãi kép. Số tiền thứ nhất gửi vào ngân hàng MSB với lãi suất \(2,1\% \) một quý (3 tháng) trong thời gian \(15\) tháng. Số tiền còn lại gửi vào ngân hàng VietinBank với lãi suất \(0,73\% \) một tháng trong thời gian \(9\) tháng. Biết tổng số tiền lãi Bác An nhận được ở hai ngân hàng là \(26670725,95\) đồng. Hỏi số tiền bác An lần lượt gửi ở hai ngân hàng \[MSB\] và VietinBank là bao nhiêu (số tiền được làm tròn tới hàng đơn vị)?
Quảng cáo
Trả lời:
Gọi \[x\] là số tiền bác An gửi ngân hàng \[MSB\].
\[320000000 - x\] là số tiền bác An gửi ngân hàng VietinBank.
Sau 15 tháng số tiền lãi ở ngân hàng \[MSB\] là \[x{(1 + 2,1\% )^5} - x\].
Sau 9 tháng số tiền lãi ở ngân hàng VietinBank là \[(320000000 - x){(1 + 0.73\% )^9} - (320000000 - x)\].
Ta có \[x{(1 + 2,1\% )^5} - x + (320000000 - x){(1 + 0,73\% )^9} - (320000000 - x) = 26670725,95\].
\[ \Leftrightarrow x = 120000000\].
Vậy số tiền bác An gửi vào hai ngân hàng\[MSB\]là \(120\) triệu đồng và ngân hàng VietinBank \(200\) triệu đồng
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Do \(ABCD\) là hình bình hành nên \(CD\,{\rm{//}}\,AB\).
Ta có: \(\left\{ \begin{array}{l}CD\,{\rm{//}}\,AB\\CD\, \not\subset \,\,(\,SAB\,)\,\,\\AB\, \subset \,(SAB\,)\end{array} \right.\, \Rightarrow \,CD\,{\rm{//}}\,(\,SAB)\) (điều phải chứng minh).
b) Ta có \(OM,MN\) là đường trung bình của tam giác \(SAC\) và tam giác \(SBD\)
\(\left\{ \begin{array}{l}OM||SA\\OM \not\subset \left( {SAB} \right)\\SA \subset \left( {SAB} \right)\end{array} \right. \Rightarrow OM//\left( {SAB} \right)\)(1)
\(\left\{ \begin{array}{l}ON||SB\\ON \not\subset \left( {SAB} \right)\\SB \subset \left( {SAB} \right)\end{array} \right. \Rightarrow ON//\left( {SAB} \right)\) (2)
Từ (1), (2) và \(ON \cap OM = O,OM,ON \subset \left( {OMN} \right) \Rightarrow \left( {OMN} \right)//\left( {SAB} \right)\)
c) Gọi \((P)\) là mặt phẳng đi qua điểm \(O\) và song song với mặt phẳng \(\left( {SBC} \right)\). Xác định giao tuyến của mặt phẳng \((P)\)với các mặt phẳng \[(ABCD)\]và \[(SAB)\].
Ta có \[\left\{ \begin{array}{l}O \in \left( P \right) \cap \left( {ABCD} \right)\\\left( P \right)//\left( {SBC} \right)\\\left( {ABCD} \right) \cap \left( {SBC} \right) = BC\end{array} \right. \Rightarrow \left( P \right) \cap \left( {ABCD} \right) = Ox,Ox//BC\]
Gọi \(Ox \cap AB = Q\)
\[\left\{ \begin{array}{l}Q \in \left( P \right) \cap \left( {SAB} \right)\\\left( P \right)//\left( {SBC} \right)\\\left( {SAB} \right) \cap \left( {SBC} \right) = SB\end{array} \right. \Rightarrow \left( P \right) \cap \left( {SAB} \right) = Qy,Oy//SB\].
d)
Cách 1:

Gọi \(F\) là giao điểm của \(AE\) và \(CD\) trong mặt phẳng \(\left( {ABCD} \right)\).
Ta có: \(\left\{ \begin{array}{l}GE \subset \left( {ANF} \right)\\GE//\left( {SCD} \right)\\\left( {ANF} \right) \cap \left( {SCD} \right) = NF\end{array} \right. \Rightarrow GE//NF\)
\( \Rightarrow \frac{{FE}}{{FA}} = \frac{{NG}}{{NA}} = \frac{1}{3}\)
Theo Talet, ta có: \(\frac{{EC}}{{AD}} = \frac{{FE}}{{FA}} = \frac{1}{3}\)\( \Rightarrow EC = \frac{1}{3}AD = \frac{1}{3}BC \Rightarrow \frac{{EB}}{{EC}} = 2\)
Nhận xét: \(\Delta EAB\) và \(\Delta EAC\) có chung đường cao kẻ từ \(A\).
Do đó: \(\frac{{{S_{\Delta EAB}}}}{{{S_{\Delta EAC}}}} = \frac{{EB}}{{EC}} = 2\).
Cách 2:
Vẽ \(GF\) song song với \(SD\)\(\left( {F \in AD} \right)\).
Ta chứng minh được: \(\left( {GEF} \right)//\left( {SCD} \right) \Rightarrow EF//CD\)
Từ đó suy ra được:
\(\frac{{EC}}{{BC}} = \frac{{FD}}{{AD}} = \frac{{GN}}{{AN}} = \frac{1}{3} \Rightarrow EC = \frac{1}{3}BC\)
Nhận xét: \(\Delta EAB\) và \(\Delta EAC\) có chung đường cao kẻ từ \(A\)
Do đó: \(\frac{{{S_{\Delta EAB}}}}{{{S_{\Delta EAC}}}} = \frac{{EB}}{{EC}} = 2\)
Câu 2
Lời giải
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.