Câu hỏi:

05/12/2025 5 Lưu

Cho tứ diện\[ABCD\]. Gọi \[E,F\] lần lượt là trung điểm \[AB,AC\](Như hình vẽ).

Cho tứ diện ABCD. Gọi E,F\ lần lượt là trung điểm AB,AC(Như hình vẽ). (ảnh 1)

Đường thẳng \[EF\] song song với mặt phẳng nào sau đây?

A. \(\left( {BCD} \right)\).    
B. \(\left( {ACD} \right)\).     
C. \(\left( {ABC} \right)\).
D. \(\left( {ABD} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Trong tam giác \(ABC\)\[E,F\] lần lượt là trung điểm của \(AB\), \(AC\) nên \[EF\] là đường trung bình của tam giác \(ABC\). Khi đó \(EF\parallel BC\).

Ta có \(EF\parallel BC\), \(BC \subset \left( {BCD} \right)\)\(EF \not\subset \left( {BCD} \right)\) nên \(EF\parallel \left( {BCD} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[MN\] nằm trên mặt phẳng \[(ABD)\].     
B. \[MN\] nằm trên mặt phẳng \[\left( {MCD} \right)\].
C. \[MN\] cắt \(AC\).  

D. \[MN\] cắt \(BD\).

Lời giải

Chọn B

Do \(N \in CD\) nên  \[MN\] nằm trên mặt phẳng \[\left( {MCD} \right)\].

Lời giải

Do \(\pi < \alpha < \frac{{3\pi }}{2} \Rightarrow \cos \alpha < 0\)

Cho sin alpha  =  -3/5 với (ảnh 1)

Câu 4

A. \[1;\frac{1}{2};\frac{1}{3}\].
B. \[\frac{1}{2};\frac{1}{3};\frac{1}{4}\].    
C. \[1;\frac{1}{3};\frac{1}{5}\].     
D. \[\frac{1}{2};\frac{1}{4};\frac{1}{8}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{1}{2};\frac{1}{4};\frac{1}{6}\].      
B. \[2;4;8\].
C. \[1;7;\13].
D. \[1;\frac{1}{2};\frac{1}{4}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \( - 22\).     
B. \(0\).    
C. \( - \infty \).
D. \( + \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left[ {12;2} \right]\].      
B. \[\left[ {12; - 12} \right]\].        
C. \[\left[ { - 2;12} \right]\].    
D. \[\left[ {2;12} \right]\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP