Câu hỏi:

10/12/2025 4 Lưu

Phương trình sin (2x - π3) = 0 có nghiệm là

A. x= π2 + kπ, k Z

B. x= π3 + kπ, k Z

C. x= π6 + kπ2, k Z

D. x= kπ, k Z

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

                                        \(\begin{array}{l}\sin \left( {2x - \frac{\pi }{3}} \right) = 0 \Leftrightarrow 2x - \frac{\pi }{3} = k\pi ,k \in \mathbb{Z}\\ & \Leftrightarrow 2x = \frac{\pi }{3} + k\pi ,k \in \mathbb{Z}\\ & \Leftrightarrow x = \frac{\pi }{6} + \frac{{k\pi }}{2},k \in \mathbb{Z}\end{array}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack
a) Ta có \[BC\,{\rm{//}}\,AD\] (do ABCD là hình thang), mà\[AD \subset \left( {ADM} \right)\], \[BC \not\subset \left( {ADM} \right)\] nên suy ra \[BC//\left( {ADM} \right)\].
b) Trong mặt phẳng \[\left( {ABCD} \right)\], gọi \[I = AB \cap CD\]\[ \Rightarrow I \in AB \subset \left( {ABM} \right)\];
Trong mặt phẳng \[\left( {SCD} \right)\], gọi \[N = IM \cap SC\] và \[K\] là trung điểm \[IM\].
Ta có: \[\frac{{IC}}{{ID}} = \frac{{BC}}{{AD}} = \frac{1}{2}\]
Trong tam giác \[IMD\] có \[KC\] là đường trung bình nên \[KC\,{\rm{//}}\,MD\] và\[KC = \frac{1}{2}MD\]
Mà \[SM = \frac{1}{2}MD\]\[ \Rightarrow SM = KC\].
Lại có \[KC\,{\rm{//}}\,SM\left( {{\rm{do }}M \in SD} \right)\]\[ \Rightarrow \frac{{SN}}{{NC}} = \frac{{SM}}{{KC}} = 1\].
Vậy \[\frac{{SN}}{{SC}} = \frac{1}{2}\].

Câu 2

A. \[y = \frac{1}{x}\]   
B. \[y = \sqrt {x - 1} \].
C. \[y = {x^4} + 3{x^2} - 1\].    
D. \[y = \tan x\].

Lời giải

Chọn C

Xét câu A, hàm số xác định khi \(x \ne 0\) nên liên tục trên \({D_1} = \mathbb{R}{\rm{\backslash }}\left\{ 0 \right\}\).

Xét câu B, hàm số xác định khi \(x - 1 \ge 0 \Leftrightarrow x \ge 1\) nên liên tục trên \({D_2} = \left[ {1; + \infty } \right)\).

Xét câu C, hàm số đã cho là hàm đa thức liên tục trên \(\mathbb{R}\).

Xét câu D, hàm số xác định khi \(\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \), \(k \in \mathbb{Z}\) nên liên tục trên \({D_3} = \mathbb{R}{\rm{\backslash }}\left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).

Câu 3

A. \[{x_0} = - 1\].         
B. \[{x_0} = 0\]     
C. \[{x_0} = 2023\]. 
D. \[{x_0} = 1\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( {SAB} \right)\).
B. \(\left( {SBD} \right)\).    
C. \(\left( {SCD} \right)\).               
D. \(\left( {ABCD} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. un = u1+ (n-1)d

B. \(\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b\)        

C. un= u1 - (n-1)d

D. un = u1 +d

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(x = \frac{\pi }{2} + k\pi \), \(\left( {k \in \mathbb{Z}} \right)\).
B. \(x = \pi + k2\pi \), \(\left( {k \in \mathbb{Z}} \right)\).  
C. \(x = k\pi \) \(\left( {k \in \mathbb{Z}} \right)\).       
D. \(x = k2\pi \) \(\left( {k \in \mathbb{Z}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP