Cho hình chóp S. ABCD có đáy là hình thang ABCD với AD // BC và AD = 2BC. Gọi M là điểm trên cạnh SD thỏa mãn SM = 1/3 SD. Mặt phẳng (ABM) cắt cạnh bên SC tại điểm N.
a) Chứng minh \[BC//\left( {ADM} \right)\].
b) Tính tỉ số
a) Chứng minh \[BC//\left( {ADM} \right)\].
b) Tính tỉ số
Quảng cáo
Trả lời:

b) Trong mặt phẳng \[\left( {ABCD} \right)\], gọi \[I = AB \cap CD\]\[ \Rightarrow I \in AB \subset \left( {ABM} \right)\];
Trong mặt phẳng \[\left( {SCD} \right)\], gọi \[N = IM \cap SC\] và \[K\] là trung điểm \[IM\].
Ta có: \[\frac{{IC}}{{ID}} = \frac{{BC}}{{AD}} = \frac{1}{2}\]
Trong tam giác \[IMD\] có \[KC\] là đường trung bình nên \[KC\,{\rm{//}}\,MD\] và\[KC = \frac{1}{2}MD\]
Mà \[SM = \frac{1}{2}MD\]\[ \Rightarrow SM = KC\].
Lại có \[KC\,{\rm{//}}\,SM\left( {{\rm{do }}M \in SD} \right)\]\[ \Rightarrow \frac{{SN}}{{NC}} = \frac{{SM}}{{KC}} = 1\].
Vậy \[\frac{{SN}}{{SC}} = \frac{1}{2}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D

Vì \(O\), \(O'\) là tâm của hai đáy \(ABCD\), \(A'B'C'D'\) nên ta sẽ có \[OO'\parallel AA'\parallel BB'\parallel CC'\parallel DD'\].
Do đó hình chiếu song song của O lên mặt phẳng (A'B'C'D') theo phương AA' là O'
Câu 2
A. OH // (SAB)
B. HK // (SAB)
C. OK // (SAD)
D. HK // (SBD)
Lời giải
Chọn B

Xét câu A, ta có: \(\left\{ \begin{array}{l}OH\parallel AB\\AB \subset \left( {SAB} \right)\\OH \not\subset \left( {SAB} \right)\end{array} \right. \Rightarrow OH\parallel \left( {SAB} \right)\).
Xét câu C, ta có: \(\left\{ \begin{array}{l}OK\parallel AD\\AD \subset \left( {SAD} \right)\\OK \not\subset \left( {SAD} \right)\end{array} \right. \Rightarrow OK\parallel \left( {SAD} \right)\).

Câu 3
A. SP (P là giao điểm của AB và CD)
B. SO (O là giao điểm của AC và BD)
C. SI (I là giao điểm của AC và BM)
D. SJ (J là giao điểm của AM và BD)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

