Cho \(f(x)\) là hàm đa thức thoả mãn \(\mathop {\lim }\limits_{x \to 2} \frac{{f(x) + 1}}{{x - 2}} = a\) và tồn tại\(\mathop {\lim }\limits_{x \to 2} \frac{{\sqrt {f(x) + 2x + 1} - x}}{{{x^2} - 4}} = T\). Khi đó
Quảng cáo
Trả lời:
Chọn C
Nếu \(f\left( 2 \right) \ne - 1 \Rightarrow \mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) + 1}}{{x - 2}} = \infty \) ( mâu thuẫn giả thiết )
Do đó \(f\left( 2 \right) = - 1\)
Ta có \(\mathop {\lim }\limits_{x \to 2} \frac{{\sqrt {f(x) + 2x + 1} - x}}{{{x^2} - 4}} = T\)và ta có
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 2} \frac{{\sqrt {f(x) + 2x + 1} - x}}{{{x^2} - 4}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) + 1 + 2x - {x^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {\left[ {\sqrt {f(x) + 2x + 1} + x} \right]} \right)}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) + 1}}{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {\left[ {\sqrt {f(x) + 2x + 1} + x} \right]} \right)}} + \mathop {\lim }\limits_{x \to 2} \frac{{ - x\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {\left[ {\sqrt {f(x) + 2x + 1} + x} \right]} \right)}}\\ = \frac{a}{{4.\left( {2 + 2} \right)}} + \mathop {\lim }\limits_{x \to 2} \frac{{ - x}}{{\left( {x + 2} \right)\left( {\left[ {\sqrt {f(x) + 2x + 1} + x} \right]} \right)}} = \frac{a}{{16}} - \frac{2}{{4\left( {2 + 2} \right)}} = \frac{a}{{16}} - \frac{1}{8} = \frac{{a - 2}}{{16}}\end{array}\)
Hay là \(T = \frac{{a - 2}}{{16}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 3n + 1} - n} \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} + 3n + 1 - {n^2}}}{{\sqrt {{n^2} + 3n + 1} + n}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{3n + 1}}{{\sqrt {{n^2} + 3n + 1} + n}}\)
\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{3 + \frac{1}{n}}}{{\sqrt {1 + \frac{3}{n} + \frac{1}{{{n^2}}}} + 1}} = \frac{3}{2}\)
b) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 3x + 2}}{{4 - {x^2}}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{\left( {2 - x} \right)\left( {2 + x} \right)}}\)
\( = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 1} \right)}}{{ - \left( {x + 2} \right)}} = - \frac{1}{4}\)
Câu 2
D. \(\left( {SAB} \right)\).
Lời giải
Chọn D

Do \(AD{\rm{//}}BC\) nên \(AN{\rm{//}}BC\)và có \(AD = 2BC \Rightarrow AN = BC\)( do \(AN = \frac{{AD}}{2}\))\(\)
Do đó tứ giác \(ANCB\) là hình bình hành nên \(CN{\rm{//}}AB\)
Có \(\left\{ \begin{array}{l}AB \subset \left( {SAB} \right)\\CN \not\subset \left( {SAB} \right)\end{array} \right. \Rightarrow CN{\rm{//}}\left( {SAB} \right)\)(1)
Mặt khác \(MN{\rm{//}}SA\)vì \(MN\)là đường trung bình tam giác \(SAD\)
Nên \(\left\{ \begin{array}{l}SA \subset \left( {SAB} \right)\\MN \not\subset \left( {SAB} \right)\end{array} \right. \Rightarrow MN{\rm{//}}\left( {SAB} \right)\)(2)
Từ (1) và (2) \( \Rightarrow \left( {SAB} \right){\rm{//}}\left( {CMN} \right)\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.