Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(M,\,N\)lần lượt là trung điểm của \(A'B'\) và \(AB\). Chứng minh rằng: \(\left( {AMC'} \right){\rm{//}}\left( {CNB'} \right)\).
Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(M,\,N\)lần lượt là trung điểm của \(A'B'\) và \(AB\). Chứng minh rằng: \(\left( {AMC'} \right){\rm{//}}\left( {CNB'} \right)\).
Quảng cáo
Trả lời:

+Ta có\(AN{\rm{//}}MB',AN = MB' \Rightarrow ANB'M\) là hình bình hành\( \Rightarrow AM{\rm{//}}NB' \Rightarrow AM{\rm{//}}\left( {NCB'} \right)\)
\(CC'{\rm{//}}MN,CC' = MN \Rightarrow CC'MN\) là hình bình hành nên \(C'M//CN \Rightarrow C'M{\rm{//}}\left( {CNB'} \right)\).
Lại có \(C'M\) cắt \(AM\) trong \(\left( {AMC'} \right)\)\( \Rightarrow \left( {AMC'} \right){\rm{//}}\left( {CNB'} \right)\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
D. \(\left( {SAB} \right)\).
Lời giải
Chọn D

Do \(AD{\rm{//}}BC\) nên \(AN{\rm{//}}BC\)và có \(AD = 2BC \Rightarrow AN = BC\)( do \(AN = \frac{{AD}}{2}\))\(\)
Do đó tứ giác \(ANCB\) là hình bình hành nên \(CN{\rm{//}}AB\)
Có \(\left\{ \begin{array}{l}AB \subset \left( {SAB} \right)\\CN \not\subset \left( {SAB} \right)\end{array} \right. \Rightarrow CN{\rm{//}}\left( {SAB} \right)\)(1)
Mặt khác \(MN{\rm{//}}SA\)vì \(MN\)là đường trung bình tam giác \(SAD\)
Nên \(\left\{ \begin{array}{l}SA \subset \left( {SAB} \right)\\MN \not\subset \left( {SAB} \right)\end{array} \right. \Rightarrow MN{\rm{//}}\left( {SAB} \right)\)(2)
Từ (1) và (2) \( \Rightarrow \left( {SAB} \right){\rm{//}}\left( {CMN} \right)\)
Câu 2
Lời giải
Chọn A
Hàm số \(y = \sin x\)liên tục trên \(\mathbb{R}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.