Câu hỏi:

11/12/2025 20 Lưu

Để xây dựng phương án kinh doanh cho một loại sản phẩm, doanh nghiệp tính toán lợi nhuận \(y\) (đồng) theo công thức sau: \(y =  - 86{x^2} + 86000x - 18146000\), trong đó \(x\) là số sản phẩm được bán ra.

a) Doanh nghiệp bị lỗ khi bán từ 303 đến 698 sản phẩm.

b) Doanh nghiệp có lãi khi bán tối đa 302 sản phẩm hoặc bán tối thiểu 697 sản phẩm

c) Doanh nghiệp có lãi khi bán từ 303 đến 697 sản phẩm.

d) Doanh nghiệp bị lỗ khi bán tối đa 302 sản phẩm hoặc bán tối thiểu 698 sản phẩm

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét tam thức bậc hai \(f(x) =  - 86{x^2} + 86000x - 18146000\).

Nhận thấy \(f(x) = 0\) có hai nghiệm là \({x_1} \approx 302,5;\,\,\,\,\,\,\,{x_2} \approx 697,5\) và hệ số \(a =  - 86 < 0\). Ta có bảng xét dấu sau:

Diagram

Description automatically generated

Vì \(x\) là số nguyên dương nên:

Doanh nghiệp có lãi khi và chỉ khi \(f(x) > 0\), tức là \(303 \le x \le 697\).

Doanh nghiệp bị lỗ khi và chỉ khi \(f(x) < 0\), tức là \(x \le 302\) hoặc \(x \ge 698\).

Vậy doanh nghiệp có lãi khi bán từ 303 đến 697 sản phẩm, doanh nghiệp bị lỗ khi bán tối đa 302 sản phẩm hoặc bán tối thiểu 698 sản phẩm.

a) Sai: Doanh nghiệp bị lỗ khi bán từ 303 đến 698 sản phẩm.

b) Sai: Doanh nghiệp có lãi khi bán tối đa 302 sản phẩm hoặc bán tối thiểu 697 sản phẩm

c) Đúng: Doanh nghiệp có lãi khi bán từ 303 đến 697 sản phẩm.

d) Đúng: Doanh nghiệp bị lỗ khi bán tối đa 302 sản phẩm hoặc bán tối thiểu 698 sản phẩm

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng:Số phần tử của không gian mẫu \(n\left( \Omega  \right) = C_{100}^5.\)

b) Sai: Từ 1 đến 100 có 50 số chẵn, suy ra số cách chọn 5 thẻ đều mang số chẵn là \(n\left( A \right) = C_{50}^5.\)

Vậy xác suất để 5 thẻ lấy ra đều mang số chẵn là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{50}^5}}{{C_{100}^5}} \approx 0,028\)

c) Đúng: Gọi B là biến cố: “5 thẻ lấy ra có 2 thẻ mang số chẵn và 3 thẻ mang số lẻ”.

Suy ra \(n\left( B \right) = C_{50}^2.C_{50}^3\). Vậy \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{50}^2.C_{50}^3}}{{C_{100}^5}} \approx 0,32\)

d) Sai: Từ 1 đến 100 có 33 số chia hết cho 3, 67 số không chia hết cho 3.

Gọi C là biến cố: “Ít nhất một số ghi trên 5 thẻ được chọn chia hết cho 3”.

Ta có \(\overline C \): “Cả 5 số trên 5 thẻ được chọn đều không chia hết cho 3”.

Suy ra \(n\left( {\overline C } \right) = C_{67}^5\), do đó \(n\left( C \right) = C_{100}^5 - C_{67}^5\).

Vậy \(P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{100}^5 - C_{67}^5}}{{C_{100}^5}} \approx 0,87\).

Câu 2

A. \(f\left( x \right) < 0,\forall x \in \mathbb{R}\).                                  
B. \(f\left( x \right) = 0,\forall x \in \mathbb{R}\).                                
C. \(f\left( x \right) \le 0,\forall x \in \mathbb{R}\).                 
D. \(f\left( x \right) > 0,\forall x \in \mathbb{R}\).

Lời giải

Đáp án đúng là D

Từ bảng xét dấu ta thấy \(f\left( x \right) > 0,\forall x \in \mathbb{R}\).

Câu 4

A. \(D = \left[ {1; + \infty } \right)\).                   
B. \(D = \left( {1; + \infty } \right)\).   
C. \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).          
D. \(D = \left( { - \infty ;\,1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{157}}{{2313}}\).                                  
B. \(\frac{{190}}{{1309}}\).     
C. \(\frac{{570}}{{1309}}\).                                       
D. \(\frac{{467}}{{1509}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP