Câu hỏi:

12/12/2025 47 Lưu

Trong không gian, cho các mệnh đề sau, mệnh đề nào là mệnh đề đúng?

A. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau.

B. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.

C. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì vuông góc với nhau.

D. Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc thì song song với đường thẳng còn lại.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai

b) Đúng

c) Sai

d) Đúng

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh a, góc ABC = 60 độ , SO vuông góc (ABCD) và SO =3a/4, đặt x = d (O,(SAB), y = d (D, (SAB), z = d (CD,SA). Các mệnh đề sau đúng hay sai? (ảnh 1)

Tam giác \(ABC\) đều cạnh \(a\) nên đường cao \(CM = \frac{{a\sqrt 3 }}{2}\). Gọi \(N\) là trung điểm của \(AM\) \( \Rightarrow ON \bot AB;ON = \frac{{a\sqrt 3 }}{4}\).

Kẻ \(OH \bot SN\)\( \Rightarrow d\left( {O,\left( {SAB} \right)} \right) = OH\).

\[\frac{1}{{O{H^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{N^2}}}\]; \[ON = \frac{1}{2}CM = \frac{{a\sqrt 3 }}{4}\]; \[SO = \frac{{3a}}{4} \Rightarrow OH = \frac{{3a}}{8}\].

\(x = d\left( {O,\left( {SAB} \right)} \right) = \frac{{3a}}{8}\),

\(y = d\left( {D,\left( {SAB} \right)} \right) = 2.d\left( {O,\left( {SAB} \right)} \right) = 2x\),

\(z = d\left( {CD,SA} \right)\)\( = d\left( {D,\left( {SAB} \right)} \right) = 2x\).

Vậy \(x + y + z = 5x = \frac{{15a}}{8}\).

Lời giải

Trả lời: \( \approx {73,4^^\circ }\)

Lời giải

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a,AD = 2a,AA' = 3a. Tính góc phẳng nhị diện [A',BD,A]? (ảnh 1)

Kẻ \(AI \bot BD\). Mà \(BD \bot {A^\prime }A \Rightarrow BD \bot \left( {A{A^\prime }I} \right)\)

\(\begin{array}{l}{\rm{ Ta c\'o : }}\left\{ {\begin{array}{*{20}{l}}{\left( {{A^\prime }BD} \right) \cap (ABD) = BD}\\{{\mathop{\rm Trong}\nolimits} (ABD),AI \bot BD}\\{{\mathop{\rm Trong}\nolimits} \left( {{A^\prime }BD} \right),{A^\prime }I \bot BD}\end{array}} \right.\\ \Rightarrow \left[ {{A^\prime },BD,A} \right] = \widehat {{A^\prime }IA}\end{array}\)

Ta có: \(AI = \frac{1}{{\sqrt {\frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{{(2a)}^2}}}} }} = \frac{{2\sqrt 5 }}{5}a\)

Xét \(\Delta A{A^\prime }I\) vuông tại \(A:\tan \widehat {{A^\prime }IA} = \frac{{{A^\prime }A}}{{AI}} = \frac{{a\sqrt 3 }}{{\frac{{2\sqrt 5 }}{5}a}} = \frac{{3\sqrt 5 }}{2} \Rightarrow \widehat {{A^\prime }IA} \approx {73,4^^\circ }\)

Câu 3

a) Ta có \[\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = 2\]

Đúng
Sai

b) Với \(a =  - 2\) thì hàm số có đạo hàm tại \[x = 1\]

Đúng
Sai

c) Với \(a = 2\) thì hàm số có đạo hàm tại \[x = 1\]

Đúng
Sai
d) Với \(a = {m_0}\) thì hàm số có đạo hàm tại \[x = 1\], khi đó : \(\mathop {\lim }\limits_{x \to {m_0}} \left( {{x^2} + 2x - 3} \right) = 5\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP