Cho hình lập phương \[ABCD.A'B'C'D'\] có độ dài cạnh bằng \[10\]. Tính khoảng cách giữa hai mặt phẳng \[\left( {ADD'A'} \right)\] và \[\left( {BCC'B'} \right)\].
Cho hình lập phương \[ABCD.A'B'C'D'\] có độ dài cạnh bằng \[10\]. Tính khoảng cách giữa hai mặt phẳng \[\left( {ADD'A'} \right)\] và \[\left( {BCC'B'} \right)\].
A. \[\sqrt {10} \].
Quảng cáo
Trả lời:

Ta có \[\left( {ADD'A'} \right){\rm{//}}\left( {BCC'B'} \right)\]\[ \Rightarrow d\left( {\left( {ADD'A'} \right);\left( {BCC'B'} \right)} \right)\]\[ = d\left( {A;\left( {\left( {BCC'B'} \right)} \right)} \right)\]\[ = AB = 10\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Ta có \[\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = 2\]
b) Với \(a = - 2\) thì hàm số có đạo hàm tại \[x = 1\]
c) Với \(a = 2\) thì hàm số có đạo hàm tại \[x = 1\]
Lời giải
|
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
Để hàm số có đạo hàm tại \[x = 1\] thì trước hết \[f(x)\] phải liên tục tại \[x = 1\]
Hay \[\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = 2 = f(1) = a\].
Khi đó, ta có:\[\mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{{{x^2} - 1}}{{x - 1}} - 2}}{{x - 1}} = 1\].
Vậy \[a = 2\] là giá trị cần tìm.
Lời giải
Trả lời: \( \approx {73,4^^\circ }\)
Lời giải
Kẻ \(AI \bot BD\). Mà \(BD \bot {A^\prime }A \Rightarrow BD \bot \left( {A{A^\prime }I} \right)\)
\(\begin{array}{l}{\rm{ Ta c\'o : }}\left\{ {\begin{array}{*{20}{l}}{\left( {{A^\prime }BD} \right) \cap (ABD) = BD}\\{{\mathop{\rm Trong}\nolimits} (ABD),AI \bot BD}\\{{\mathop{\rm Trong}\nolimits} \left( {{A^\prime }BD} \right),{A^\prime }I \bot BD}\end{array}} \right.\\ \Rightarrow \left[ {{A^\prime },BD,A} \right] = \widehat {{A^\prime }IA}\end{array}\)
Ta có: \(AI = \frac{1}{{\sqrt {\frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{{(2a)}^2}}}} }} = \frac{{2\sqrt 5 }}{5}a\)
Xét \(\Delta A{A^\prime }I\) vuông tại \(A:\tan \widehat {{A^\prime }IA} = \frac{{{A^\prime }A}}{{AI}} = \frac{{a\sqrt 3 }}{{\frac{{2\sqrt 5 }}{5}a}} = \frac{{3\sqrt 5 }}{2} \Rightarrow \widehat {{A^\prime }IA} \approx {73,4^^\circ }\)
Câu 3
A. \(P(X) = 0,306\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.