Câu hỏi:

12/12/2025 11 Lưu

Minh và Hùng cùng thực hiện hai thí nghiệm độc lập với nhau, xác suất thành công của Minh là 0,45, xác suất thành công của Hùng là 0,68. Đề được tham gia cuộc thi nghiên cứu khoa học toàn quốc, học sinh đó phải thành công tạo ra sản phẩm hoàn chỉnh. Vậy khả năng cả hai bạn được tham gia cuộc thi là bao nhiêu?

A. \(P(X) = 0,306\). 

B. \(P(X) = 0,176\).
C. \(P(X) = 0,144\). 
D. \(P(X) = 0,374\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố "Minh được tham gia"; \(B\) là biến cố "Hùng được tham gia cuộc thi"; \(X\) là biến cố "Cả hai bạn được tham gia cuộc thi".

Vì \(A\) và \(B\) là hai biến cố độc lập và \(P(X) = P(A) \cdot P(B) = 0,45 \cdot 0,68 = 0,306\).

Chọn A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Ta có \[\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = 2\]

Đúng
Sai

b) Với \(a =  - 2\) thì hàm số có đạo hàm tại \[x = 1\]

Đúng
Sai

c) Với \(a = 2\) thì hàm số có đạo hàm tại \[x = 1\]

Đúng
Sai
d) Với \(a = {m_0}\) thì hàm số có đạo hàm tại \[x = 1\], khi đó : \(\mathop {\lim }\limits_{x \to {m_0}} \left( {{x^2} + 2x - 3} \right) = 5\)
Đúng
Sai

Lời giải

a) Đúng

b) Sai

c) Đúng

d) Đúng

Để hàm số có đạo hàm tại \[x = 1\] thì trước hết \[f(x)\] phải liên tục tại \[x = 1\]

Hay \[\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = 2 = f(1) = a\].

Khi đó, ta có:\[\mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{{{x^2} - 1}}{{x - 1}} - 2}}{{x - 1}} = 1\].

Vậy \[a = 2\] là giá trị cần tìm.

Lời giải

Trả lời: \( \approx {73,4^^\circ }\)

Lời giải

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a,AD = 2a,AA' = 3a. Tính góc phẳng nhị diện [A',BD,A]? (ảnh 1)

Kẻ \(AI \bot BD\). Mà \(BD \bot {A^\prime }A \Rightarrow BD \bot \left( {A{A^\prime }I} \right)\)

\(\begin{array}{l}{\rm{ Ta c\'o : }}\left\{ {\begin{array}{*{20}{l}}{\left( {{A^\prime }BD} \right) \cap (ABD) = BD}\\{{\mathop{\rm Trong}\nolimits} (ABD),AI \bot BD}\\{{\mathop{\rm Trong}\nolimits} \left( {{A^\prime }BD} \right),{A^\prime }I \bot BD}\end{array}} \right.\\ \Rightarrow \left[ {{A^\prime },BD,A} \right] = \widehat {{A^\prime }IA}\end{array}\)

Ta có: \(AI = \frac{1}{{\sqrt {\frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{{(2a)}^2}}}} }} = \frac{{2\sqrt 5 }}{5}a\)

Xét \(\Delta A{A^\prime }I\) vuông tại \(A:\tan \widehat {{A^\prime }IA} = \frac{{{A^\prime }A}}{{AI}} = \frac{{a\sqrt 3 }}{{\frac{{2\sqrt 5 }}{5}a}} = \frac{{3\sqrt 5 }}{2} \Rightarrow \widehat {{A^\prime }IA} \approx {73,4^^\circ }\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Đường thẳng \(y = 0\) cắt đồ thị hàm số \(\left( C \right)\) tại điểm có hoành độ là \(x = {\log _3}2\).

Đúng
Sai

b) Bất phương trình \(f\left( x \right) \ge  - 1\) có nghiệm duy nhất.

Đúng
Sai

c) Bất phương trình \(f\left( x \right) \ge 0\) có tập nghiệm là: \(\left( { - \infty ;{{\log }_3}2} \right)\).

Đúng
Sai
d) Đường thẳng \(y = 0\) cắt đồ thị hàm số \(\left( C \right)\) tại \(2\) điểm phân biệt.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP