Câu hỏi:

15/12/2025 16 Lưu

 Cho tứ diện \(OABC\)\(OA,\,OB,\,OC\) đôi một vuông góc với nhau và \(OA = OB = OC = a\). Khi đó thể tích của khối tứ diện \(OABC\) là :

A. \(\frac{{{a^3}}}{2}\).                           
B. \(\frac{{{a^3}}}{{12}}\).                           
C. \(\frac{{{a^3}}}{6}\).                                
D. \(\frac{{{a^3}}}{3}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Thể tích khối tứ diện \(OABC\) là \(V = \frac{1}{6}.OA.OB.OC = \frac{{{a^3}}}{6}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \( (ảnh 1)

Do \({S_{SAD}} = 3 = \frac{1}{2}.SA.AD \Rightarrow SA = \frac{6}{{2\sqrt 3 }} = \sqrt 3 \).

Mặt khác ta có \(d\left( {C,\left( {SBD} \right)} \right) = d\left( {A,\left( {SBD} \right)} \right)\).

Kẻ \(AH \bot BD\,\)tại \(H\), \(,AK \bot SH\) tại \(K\)\( \Rightarrow d\left( {A,\left( {SBD} \right)} \right) = AK\).

\(BD = \sqrt {A{B^2} + A{D^2}}  = \sqrt {13}  \Rightarrow AH = \frac{{AB.AD}}{{BD}} = \frac{{2\sqrt 3 }}{{\sqrt {13} }} = \frac{{2\sqrt {39} }}{{13}}\).

\( \Rightarrow AK = \frac{{SA.AH}}{{\sqrt {S{A^2} + A{H^2}} }} = \frac{{\sqrt 3 .\frac{{2\sqrt {39} }}{{13}}}}{{\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {{\left( {\frac{{2\sqrt {39} }}{{13}}} \right)}^2}} }} = \frac{{2\sqrt {51} }}{{17}}\).

Vậy \(d\left( {C,\left( {SBD} \right)} \right) = d\left( {A,\left( {SBD} \right)} \right) = \frac{{2\sqrt {51} }}{{17}} \approx 0,84\).

Lời giải

Theo hình thức lãi kép, tổng số tiền cả gốc lẫn lãi trong tài khoản của người đó sau \[n\] tháng là:

\[A = 200{\left( {1 + 0,58\% } \right)^n} = 200.1,{0058^n}\] (triệu đồng).

Theo đề bài \[A \ge 225 \Rightarrow 200.1,{0058^n} \ge 225 \Leftrightarrow 1,{0058^n} \ge \frac{9}{8}\]\[ \Leftrightarrow n \ge {\log _{1,0058}}\frac{9}{8} \approx 20,37\].

Vì ngân hàng chỉ tính lãi khi đến kì hạn nên phải sau ít nhất 21 tháng người đó mới có tối thiểu 225 triệu đồng trong tài khoản.

Câu 5

a) Hoành độ của điểm \(B\) là một số nguyên.
Đúng
Sai
b) Trung điểm của đoạn thẳng \(OB\) có tọa độ \(\left( {\frac{{12}}{5};\,1} \right)\).
Đúng
Sai
c) Gọi \(H\) là hình chiếu của điểm \(B\) xuống trục hoành. Khi đó \({S_{\Delta OBH}} = \frac{{\sqrt {61} }}{{25}}\)
Đúng
Sai
d) Đoạn thẳng \(AB\) có độ dài bằng \[\frac{{\sqrt {61} }}{5}\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Đường thẳng \(AH\) vuông góc với mặt phẳng \(\left( {SBC} \right)\).
Đúng
Sai
b) Đường thẳng \(SH\) là hình chiếu của đường thẳng \(SA\) lên mặt phẳng \(\left( {SBC} \right)\)
Đúng
Sai
c) Độ dài đoạn thẳng \(AH\) bằng \(\frac{{6a}}{{11}}\)
Đúng
Sai
d) Cosin góc tạo bởi đường thẳng \[SA\] và mặt phẳng \[\left( {SBC} \right)\] bằng \(\frac{{\sqrt {11} }}{{33}}\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP