Cho một khối chóp có chiều cao bằng \(h\) và diện tích đáy bằng \(B\). Nếu giữ nguyên chiều cao \(h\), còn diện tích đáy tăng lên \(3\) lần thì ta được một khối chóp mới có thể tích là:
Quảng cáo
Trả lời:
Chọn A
Ta có \(B' = 3B\) nên thể tích khối chóp mới là \(V = \frac{1}{3}B'h = \frac{1}{3}.3Bh = Bh\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Gọi \[A\left( {{x_1},{{\log }_3}\left( {5{x_1} - 3} \right)} \right)\]. Vì \[A\] là trung điểm \[OB\] nên \[B\left( {2{x_1};2{{\log }_3}\left( {5{x_1} - 3} \right)} \right)\].
Vì \[B\] thuộc đồ thị của hàm số \[y = {\log _3}\left( {5x - 3} \right)\] nên \[2{\log _3}\left( {5{x_1} - 3} \right) = {\log _3}\left( {10{x_1} - 3} \right) \Leftrightarrow \left\{ \begin{array}{l}5{x_1} - 3 > 0\\10{x_1} - 3 > 0\\{\left( {5{x_1} - 3} \right)^2} = 10{x_1} - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5{x_1} - 3 > 0\\\left[ \begin{array}{l}x = \frac{6}{5}\\x = \frac{2}{5}\end{array} \right.\end{array} \right. \Leftrightarrow {x_1} = \frac{6}{5}\].
Vì thế \[A\left( {\frac{6}{5};1} \right),\,B\left( {\frac{{12}}{5};2} \right) \Rightarrow AB = \frac{{\sqrt {61} }}{5}\].
Hình chiếu điểm \(B\) xuống trục hoành là \(H\left( {\frac{{12}}{5};\,0} \right) \Rightarrow BH = 2\) và \(OH = \frac{{12}}{5} \Rightarrow {S_{\Delta OBH}} = \frac{{12}}{5}\)
a) Đúng: Hoành độ của điểm \(B\) là một số nguyên.
b) Sai: Trung điểm của đoạn thẳng \(OB\) là điểm \(A\) có tọa độ \(\left( {\frac{6}{5};\,1} \right)\).
c) Sai: Gọi \(H\) là hình chiếu của điểm \(B\) xuống trục hoành. Khi đó \({S_{\Delta OBH}} = \frac{{12}}{5}\)
d) Đúng: Đoạn thẳng \(AB\) có độ dài bằng \[\frac{{\sqrt {61} }}{5}\].
Lời giải
Với \(b > 1 > a > 0\) ta có :
\[\log _a^2\left( {ab} \right) = 4 \Leftrightarrow {\left( {{{\log }_a}a + {{\log }_a}b} \right)^2} = 4 \Leftrightarrow {\left( {1 + {{\log }_a}b} \right)^2} = 4 \Leftrightarrow \left[ \begin{array}{l}1 + {\log _a}b = 2\\1 + {\log _a}b = - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{\log _a}b = 1\\{\log _a}b = - 3\end{array} \right.\]
Vì \(\left\{ \begin{array}{l}0 < a < 1\\b > 1\end{array} \right.\)nên \({\log _a}b = - 3\).
Khi đó :\(\log _a^3\left( {a{b^2}} \right) = {\left( {{{\log }_a}a + 2{{\log }_a}b} \right)^3} = {\left( {1 + 2.\left( { - 3} \right)} \right)^3} = - 125\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
