Câu hỏi:

15/12/2025 55 Lưu

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều, cạnh bên \(SA\) vuông góc với đáy. Gọi \(M\), \(N\) lần lượt là trung điểm của \(AB\) và \(SB\). Mệnh đề nào dưới đây là mệnh đề sai?

A. \(AN \bot BC\).          

B. \(CM \bot SB\)
C. \(CM \bot AN\).     
D. \(MN \bot MC\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Do tam giác \(ABC\) đều nên \(CM \bot AB\), vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot CM\) \( \Rightarrow CM \bot \left( {SAB} \right)\) \( \Rightarrow CM \bot SB\), \(CM \bot AN\) nên B, C đúng.

Do \(MN{\rm{//}}SA\) nên \(MN \bot \left( {ABC} \right)\) \( \Rightarrow MN \bot MC\) nên D đúng.

Vậy A sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(AA'\,{\rm{// }}\left( {DD'C'C} \right) \supset CM\)\( \Rightarrow d\left( {AA',CM} \right) = d\left( {AA',\left( {DD'C'C} \right)} \right) = AD = a\).

Lời giải

Trả lời: \( \approx {25,7^0}\)

Lời giải

Cho hình lăng trụ đều ABC.A'B'C' có đáy cạnh a, góc giữa đường thẳng A'B và mặt phẳng ABC là 60 độ. Tính góc giữa đường thẳng C'A và mặt phẳng AA'B'B? (ảnh 1)

Kẻ \({C^\prime }I \bot {A^\prime }{B^\prime }\)

Ta có: \({C^\prime }I \bot {A^\prime }A \Rightarrow {C^\prime }I \bot \left( {A{A^\prime }{B^\prime }B} \right)\) tại \(I\) và \({C^\prime }A\) cắt mp\(\left( {A{A^\prime }{B^\prime }B} \right)\) tại \(A\).

\( \Rightarrow AI\) là hình chiếu của \({C^\prime }A\) trên mp\(\left( {A{A^\prime }{B^\prime }B} \right)\)

\( \Rightarrow \left( {{C^\prime }A,\left( {A{A^\prime }{B^\prime }B} \right)} \right) = \left( {{C^\prime }A,AI} \right) = \widehat {{C^\prime }AI}\)

Ta có: \({A^\prime }A = AB \cdot \tan {60^^\circ } = \sqrt 3 a\)

\(AI = \sqrt {{A^\prime }{A^2} + {A^\prime }{I^2}}  = \sqrt {{{(a\sqrt 3 )}^2} + {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{\sqrt {13} }}{2}a\)

Xét \(\Delta {C^\prime }AI\) vuông tại \(I:\tan \widehat {{C^\prime }AI} = \frac{{{C^\prime }I}}{{AI}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\frac{{\sqrt {13} a}}{2}}} = \frac{{\sqrt {39} }}{{13}} \Rightarrow \widehat {{C^\prime }AI} \approx {25,7^0}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP