Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều, cạnh bên \(SA\) vuông góc với đáy. Gọi \(M\), \(N\) lần lượt là trung điểm của \(AB\) và \(SB\). Mệnh đề nào dưới đây là mệnh đề sai?
A. \(AN \bot BC\).
Quảng cáo
Trả lời:
Do tam giác \(ABC\) đều nên \(CM \bot AB\), vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot CM\) \( \Rightarrow CM \bot \left( {SAB} \right)\) \( \Rightarrow CM \bot SB\), \(CM \bot AN\) nên B, C đúng.
Do \(MN{\rm{//}}SA\) nên \(MN \bot \left( {ABC} \right)\) \( \Rightarrow MN \bot MC\) nên D đúng.
Vậy A sai.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(a\sqrt 2 \).
Lời giải
Ta có \(AA'\,{\rm{// }}\left( {DD'C'C} \right) \supset CM\)\( \Rightarrow d\left( {AA',CM} \right) = d\left( {AA',\left( {DD'C'C} \right)} \right) = AD = a\).
Lời giải
Trả lời: \( \approx {25,7^0}\)
Lời giải

Kẻ \({C^\prime }I \bot {A^\prime }{B^\prime }\)
Ta có: \({C^\prime }I \bot {A^\prime }A \Rightarrow {C^\prime }I \bot \left( {A{A^\prime }{B^\prime }B} \right)\) tại \(I\) và \({C^\prime }A\) cắt mp\(\left( {A{A^\prime }{B^\prime }B} \right)\) tại \(A\).
\( \Rightarrow AI\) là hình chiếu của \({C^\prime }A\) trên mp\(\left( {A{A^\prime }{B^\prime }B} \right)\)
\( \Rightarrow \left( {{C^\prime }A,\left( {A{A^\prime }{B^\prime }B} \right)} \right) = \left( {{C^\prime }A,AI} \right) = \widehat {{C^\prime }AI}\)
Ta có: \({A^\prime }A = AB \cdot \tan {60^^\circ } = \sqrt 3 a\)
\(AI = \sqrt {{A^\prime }{A^2} + {A^\prime }{I^2}} = \sqrt {{{(a\sqrt 3 )}^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{\sqrt {13} }}{2}a\)
Xét \(\Delta {C^\prime }AI\) vuông tại \(I:\tan \widehat {{C^\prime }AI} = \frac{{{C^\prime }I}}{{AI}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\frac{{\sqrt {13} a}}{2}}} = \frac{{\sqrt {39} }}{{13}} \Rightarrow \widehat {{C^\prime }AI} \approx {25,7^0}\)
Câu 3
A. \(12{a^3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
