Câu hỏi:

15/12/2025 37 Lưu

Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\). Biết \(SA = 2a\) và tam giác \(ABC\) vuông tại \(A\) có \(AB = 3a\), \(AC = 4a\). Tính thể tích khối chóp \(S.ABC\) theo \(a\).

A. \(12{a^3}\). 

B. \(6{a^3}\).  
C. \(8{a^3}\). 
D. \(4{a^3}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC). Biết SA = 2a và tam giác ABC vuông tại A có AB = 3a, AC = 4a. Tính thể tích khối chóp S.ABC theo a. (ảnh 1)

Ta có \({S_{ABC}} = \frac{1}{2}.3a.4a = 6{a^2}\); \[{V_{SABC}} = \frac{1}{3}.SA.{S_{ABC}} = \frac{1}{3}.2a.6{a^2} = 4{a^3}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(AA'\,{\rm{// }}\left( {DD'C'C} \right) \supset CM\)\( \Rightarrow d\left( {AA',CM} \right) = d\left( {AA',\left( {DD'C'C} \right)} \right) = AD = a\).

Lời giải

Do tam giác \(ABC\) đều nên \(CM \bot AB\), vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot CM\) \( \Rightarrow CM \bot \left( {SAB} \right)\) \( \Rightarrow CM \bot SB\), \(CM \bot AN\) nên B, C đúng.

Do \(MN{\rm{//}}SA\) nên \(MN \bot \left( {ABC} \right)\) \( \Rightarrow MN \bot MC\) nên D đúng.

Vậy A sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP