Câu hỏi:

15/12/2025 9 Lưu

Hàm số \(y = {\left( {x - 1} \right)^{\frac{1}{3}}}\) có tập xác định là

A. \(\left[ {1; + \infty } \right)\).              
B. \(\left( {1; + \infty } \right)\).                               
C. \(\left( { - \infty ; + \infty } \right)\).                        
D. \(\left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Vì \(\frac{1}{3}\) là số không nguyên nên hàm số \(y = {\left( {x - 1} \right)^{\frac{1}{3}}}\) xác định khi và chỉ khi \(x - 1 > 0 \Leftrightarrow x > 1\).

Vậy hàm số \(y = {\left( {x - 1} \right)^{\frac{1}{3}}}\) có tập xác định là \(\left( {1; + \infty } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì sau \(3\) phút thì số lư (ảnh 1)

Gọi \[\alpha  = \widehat {\left( {SB,AC} \right)}\]. Do \[A{B^2} + A{C^2} = B{C^2}\] nên tam giác \[ABC\] vuông tại \[A\].

Ta có \[\cos \alpha  = \frac{{\left| {\overrightarrow {SB} .\overrightarrow {AC} } \right|}}{{\left| {\overrightarrow {SB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{\left| {\left( {\overrightarrow {AB}  - \overrightarrow {AS} } \right).\overrightarrow {AC} } \right|}}{{{a^2}}} = \frac{{\left| {\overrightarrow {AB} .\overrightarrow {AC}  - \overrightarrow {AS} .\overrightarrow {AC} } \right|}}{{{a^2}}} = \frac{{\left| {\overrightarrow {AS} .\overrightarrow {AC} } \right|}}{{{a^2}}}\]

\[ = \frac{{\left| {SA.AC.cos{{60}^0}} \right|}}{{{a^2}}} = \cos {60^0}\]. Khi đó \[\alpha  = \widehat {\left( {SB,AC} \right)} = {60^0}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Đường thẳng \(BC\) vuông góc với đường thẳng \(SB\).
Đúng
Sai
b) Góc tạo bởi hai đường thẳng \(SB\)\(AB\) bằng góc giữa hai mặt phẳng \(\left( {SBC} \right)\)\(\left( {ABC} \right)\).
Đúng
Sai
c) Cosin góc tạo bởi hai đường thẳng \(SB\)\(AB\) bằng \(\frac{{\sqrt 3 }}{2}\)
Đúng
Sai
d) Góc giữa hai mặt phẳng \(\left( {SBC} \right)\)\(\left( {ABC} \right)\) bằng \({45^0}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP