Câu hỏi:

15/12/2025 131 Lưu

Số lượng của loại vi khuẩn \(A\) trong một phòng thí nghiệm được tính theo công thức \(S\left( t \right) = S\left( 0 \right){.2^t}\), trong đó \(S\left( 0 \right)\) là số lượng vi khuẩn \(A\) ban đầu, \(S\left( t \right)\) là số lượng vi khuẩn \(A\) có sau \(t\) phút. Biết sau \(3\) phút thì số lượng vi khuẩn \(A\)\(625\) nghìn con. Hỏi sau bao lâu (đơn vị: phút) kể từ lúc ban đầu, số lượng vi khuẩn \(A\)\(10\) triệu con?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vì sau \(3\) phút thì số lượng vi khuẩn \(A\) là \(625\) nghìn con

Khi đó ta có: \(625000 = S\left( 0 \right){.2^3} \Leftrightarrow S\left( 0 \right) = 78125\)con.

Thời gian để số lượng vi khuẩn \(A\) là \(10\) triệu con là: \(10000000 = {78125.2^t} \Leftrightarrow t = 7\)phút.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì sau \(3\) phút thì số lư (ảnh 1)

Gọi \[\alpha  = \widehat {\left( {SB,AC} \right)}\]. Do \[A{B^2} + A{C^2} = B{C^2}\] nên tam giác \[ABC\] vuông tại \[A\].

Ta có \[\cos \alpha  = \frac{{\left| {\overrightarrow {SB} .\overrightarrow {AC} } \right|}}{{\left| {\overrightarrow {SB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{\left| {\left( {\overrightarrow {AB}  - \overrightarrow {AS} } \right).\overrightarrow {AC} } \right|}}{{{a^2}}} = \frac{{\left| {\overrightarrow {AB} .\overrightarrow {AC}  - \overrightarrow {AS} .\overrightarrow {AC} } \right|}}{{{a^2}}} = \frac{{\left| {\overrightarrow {AS} .\overrightarrow {AC} } \right|}}{{{a^2}}}\]

\[ = \frac{{\left| {SA.AC.cos{{60}^0}} \right|}}{{{a^2}}} = \cos {60^0}\]. Khi đó \[\alpha  = \widehat {\left( {SB,AC} \right)} = {60^0}\]

Lời giải

Hàm số \[y = {\left( {{x^2} - 2x - m + 1} \right)^{\sqrt 7 }}\] có tập xác định là \[\mathbb{R}\]\[ \Leftrightarrow {x^2} - 2x - m + 1 > 0,\forall x \in \mathbb{R}\]

\[ \Leftrightarrow m < {\left( {x + 1} \right)^2},\forall x \in \mathbb{R} \Leftrightarrow m < \mathop {\min }\limits_{x \in \mathbb{R}} {\left( {x + 1} \right)^2} \Leftrightarrow m < 0\]

Mà \[\left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left( { - 2024;2024} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left( { - 2024;0} \right)\end{array} \right.\] nên có 2023 giá trị \[m\] thỏa mãn yêu cầu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 6.                           
B. 81.                       
C. 9.                               
D. 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Điều kiện xác định của phương trình là \(x > - 1\).
Đúng
Sai
b) Nếu đặt \(t = {\log _2}\left( {x + 1} \right)\) thì phương trình đã cho trở thành \({t^2} - 6t + 2 = 0\).
Đúng
Sai
c) Phương trình đã cho có hai nghiệm nguyên dương.
Đúng
Sai
d) Tổng các nghiệm của phương trình đã cho bằng \(6\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\tan \varphi = \sqrt 7 \).                   
B. \(\varphi = {60^0}\).                
C. \(\varphi = {45^0}\).                    
D. \(\cos \varphi = \frac{{\sqrt 2 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP