Câu hỏi:

15/12/2025 76 Lưu

Cho hình lập phương \(ABCD.A'B'C'D'\)có cạnh bằng \(4\). Tính khoảng cách giữa hai đường thẳng \(AB'\) \(CD'\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \[\alpha  = \widehat {\le (ảnh 1)

Gọi \(I;J\) lần lượt là trung điểm của \(AB'\) và \(CD'\)

Suy ra \(J\) lần lượt là trung điểm của\(DC'\). Do đó \[IJ\parallel AD;\,\,\,\,IJ = AD = 2a\] \(\left( 1 \right)\)

Mặt khác \[\left. \begin{array}{l}AD \bot DD'\\AD \bot DC\end{array} \right\} \Rightarrow AD \bot \left( {DD'C'C} \right) \Rightarrow AD \bot CD'\] \(\left( 2 \right)\)

Tương tự \(AD \bot AB'\) \(\left( 3 \right)\)

Từ \(\left( 1 \right)\), \(\left( 2 \right)\) và \(\left( 3 \right)\) ta có: \[IJ\] là đoạn vuông góc chung của 2 đường thẳng \(AB'\) và \(CD'\)

Vậy khoảng cách giữa hai đường thẳng \(AB'\) và \(CD'\) bằng \(4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì sau \(3\) phút thì số lư (ảnh 1)

Gọi \[\alpha  = \widehat {\left( {SB,AC} \right)}\]. Do \[A{B^2} + A{C^2} = B{C^2}\] nên tam giác \[ABC\] vuông tại \[A\].

Ta có \[\cos \alpha  = \frac{{\left| {\overrightarrow {SB} .\overrightarrow {AC} } \right|}}{{\left| {\overrightarrow {SB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{\left| {\left( {\overrightarrow {AB}  - \overrightarrow {AS} } \right).\overrightarrow {AC} } \right|}}{{{a^2}}} = \frac{{\left| {\overrightarrow {AB} .\overrightarrow {AC}  - \overrightarrow {AS} .\overrightarrow {AC} } \right|}}{{{a^2}}} = \frac{{\left| {\overrightarrow {AS} .\overrightarrow {AC} } \right|}}{{{a^2}}}\]

\[ = \frac{{\left| {SA.AC.cos{{60}^0}} \right|}}{{{a^2}}} = \cos {60^0}\]. Khi đó \[\alpha  = \widehat {\left( {SB,AC} \right)} = {60^0}\]

Lời giải

Hàm số \[y = {\left( {{x^2} - 2x - m + 1} \right)^{\sqrt 7 }}\] có tập xác định là \[\mathbb{R}\]\[ \Leftrightarrow {x^2} - 2x - m + 1 > 0,\forall x \in \mathbb{R}\]

\[ \Leftrightarrow m < {\left( {x + 1} \right)^2},\forall x \in \mathbb{R} \Leftrightarrow m < \mathop {\min }\limits_{x \in \mathbb{R}} {\left( {x + 1} \right)^2} \Leftrightarrow m < 0\]

Mà \[\left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left( { - 2024;2024} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left( { - 2024;0} \right)\end{array} \right.\] nên có 2023 giá trị \[m\] thỏa mãn yêu cầu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\tan \varphi = \sqrt 7 \).                   
B. \(\varphi = {60^0}\).                
C. \(\varphi = {45^0}\).                    
D. \(\cos \varphi = \frac{{\sqrt 2 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 6.                           
B. 81.                       
C. 9.                               
D. 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP