Cho một hình chóp có đáy là hình vuông cạng bằng \(a\), có thể tích \(V\), chiều cao \(h\). Khi đó \(h\) được xác định bởi công thức nào sau đây?
Quảng cáo
Trả lời:
Chọn B
Thể tích khối chóp là \(V = \frac{1}{3}.S.h = \frac{1}{3}.{a^2}.h\). Vậy \(h = \frac{{3V}}{{{a^2}}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lãi suất năm là 8% nên lãi suất kì hạn 6 tháng sẽ là \(r = 4\% = 0,04\). Thay \(P = 100;r = 0,04;A = 120\) vào công thức \(A = P{\left( {1 + r} \right)^t}\), ta được: \(120 = 100{\left( {1 + 0,04} \right)^t} \Rightarrow 1,2 = 1,{04^t} \Rightarrow t = {\log _{1,04}}1,2 \approx 4,65\).
Vậy sau 5 kì gửi tiết kiệm kì hạn 6 tháng, tức sau 30 tháng, người đó sẽ nhận được ít nhất 120 triệu đồng.
Lời giải
Gọi \[H\] là trọng tâm tam giác đều \[ABC\]. Vì \[A'\] cách đều \[A,B,C\] nên hình chiếu vuông góc của đỉnh \[A'\] là \[H\]cũng cách đều \[A,B,C\]. Khi đó khoảng cách giữa hai đáy chính là \[A'H.\]

Xét tam giác \[AA'H\] có: \[\left\{ \begin{array}{l}H = {90^0}\\AH = \frac{2}{3}AM = \frac{2}{3}.\frac{{\sqrt 3 }}{2} = \frac{{\sqrt 3 }}{3}\\\left( {\widehat {AA',\left( {ABC} \right)}} \right) = \widehat {A'AH} = {60^0}\end{array} \right. \Rightarrow A'H = AH.\tan {60^0} = \frac{{\sqrt 3 }}{3}.\sqrt 3 = 1.\]
Vậy khoảng cách giữa hai đáy của hình lăng trụ là \[A'H = 1\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.