Cho một hình chóp có đáy là hình vuông cạng bằng \(a\), có thể tích \(V\), chiều cao \(h\). Khi đó \(h\) được xác định bởi công thức nào sau đây?
Quảng cáo
Trả lời:
Chọn B
Thể tích khối chóp là \(V = \frac{1}{3}.S.h = \frac{1}{3}.{a^2}.h\). Vậy \(h = \frac{{3V}}{{{a^2}}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Đúng: Hàm số \(y = {\log _{\frac{{2024}}{{2023}}}}x\) có tập giá trị là \(\mathbb{R}\).
b) Sai: Vì cơ số \(\frac{{2023}}{{2024}} \in \left( {0\,;\,1} \right)\) nên hàm số \(y = {\left( {\frac{{2023}}{{2024}}} \right)^x}\) nghịch biến trên \(\mathbb{R}\).
c) Đúng: Hàm số \(y = {\log _{\frac{{2024}}{{2023}}}}x\) có tập xác định là \(\left( {0\,;\, + \infty } \right)\) nên có đồ thị nằm bên phải trục tung.
d) Sai: Vì \({\left( {\frac{{2023}}{{2024}}} \right)^x} > 0,\,\forall x \in \mathbb{R}\) nên đồ thị hàm số \(y = {\left( {\frac{{2023}}{{2024}}} \right)^x}\) không cắt trục tung.
Câu 2
Lời giải
Chọn B
Ta thấy đồ thị \(y = {x^c}\)đi xuống nên \(c < 0\), đồ thị \(y = {a^x}\)đi xuống nên \(0 < a < 1\), đồ thị \(y = {\log _b}x\) đi lên nên \(b > 1.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
