Cho một hình chóp có đáy là hình vuông cạng bằng \(a\), có thể tích \(V\), chiều cao \(h\). Khi đó \(h\) được xác định bởi công thức nào sau đây?
Quảng cáo
Trả lời:
Chọn B
Thể tích khối chóp là \(V = \frac{1}{3}.S.h = \frac{1}{3}.{a^2}.h\). Vậy \(h = \frac{{3V}}{{{a^2}}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Ta thấy đồ thị \(y = {x^c}\)đi xuống nên \(c < 0\), đồ thị \(y = {a^x}\)đi xuống nên \(0 < a < 1\), đồ thị \(y = {\log _b}x\) đi lên nên \(b > 1.\)
Lời giải

Vì \[\left\{ \begin{array}{l}S \in \left( {SAB} \right) \cap \left( {SCD} \right)\\AB \subset \left( {SAB} \right)\\CD \subset \left( {SCD} \right)\\AB//CD\end{array} \right.\] nên giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\] là đường thẳng \[d\] đi qua \[S\] và song song với \[AB,{\rm{ }}CD\].
Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[AB,{\rm{ }}CD\].
Vì \[SA = SB,{\rm{ }}SC = SD\] nên \[SM \bot AB,{\rm{ }}SN \bot CD \Rightarrow SM \bot d,{\rm{ }}SN \bot d \Rightarrow d \bot \left( {SMN} \right)\].
Mà mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\] vuông góc với nhau nên \[SM \bot SN\]. Kẻ \[SH \bot MN{\rm{ }}\left( 1 \right)\].
Vì \[d \bot \left( {SMN} \right) \Rightarrow d \bot SH \Rightarrow SH \bot AB{\rm{ }}\left( 2 \right)\].
Từ (1), (2) suy ra \[SH \bot \left( {ABCD} \right) \Rightarrow {V_{S.ABCD}} = \frac{1}{3}.SH.{S_{ABCD}} = \frac{1}{3}.SH.AB.AD\].
Đặt \[SM = x,{\rm{ }}SN = y \Rightarrow SH = \frac{{xy}}{{\sqrt {{x^2} + {y^2}} }}\]. Ta có \[S{M^2} + S{N^2} = M{N^2} \Leftrightarrow {x^2} + {y^2} = 10\].
Mặt khác \[{S_{SAB}} + {S_{SCD}} = 2 \Leftrightarrow \frac{1}{2}.x.1 + \frac{1}{2}.y.1 = 2 \Leftrightarrow x + y = 4\].
Suy ra \[xy = \frac{{{{\left( {x + y} \right)}^2} - \left( {{x^2} + {y^2}} \right)}}{2} = 3\] \[ \Rightarrow SH = \frac{{xy}}{{\sqrt {{x^2} + {y^2}} }} = \frac{3}{{\sqrt {10} }} \Rightarrow {V_{S.ABCD}} = 1\].
Vậy thể tích khối chóp \[S.ABCD\] bằng 1.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
