Cho hình chóp \[S.ABCD\] có đáy là hình chữ nhật \[ABCD\], \[SA \bot \left( {ABCD} \right)\]. Khẳng định nào sau đây đúng.
Quảng cáo
Trả lời:
Chọn A

Ta có \[\left\{ \begin{array}{l}SA \bot \left( {ABCD} \right)\\BC \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow SA \bot BC\].
Vậy có \[\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\\SA \cap AB = \left\{ A \right\}\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Đúng: Hàm số \(y = {\log _{\frac{{2024}}{{2023}}}}x\) có tập giá trị là \(\mathbb{R}\).
b) Sai: Vì cơ số \(\frac{{2023}}{{2024}} \in \left( {0\,;\,1} \right)\) nên hàm số \(y = {\left( {\frac{{2023}}{{2024}}} \right)^x}\) nghịch biến trên \(\mathbb{R}\).
c) Đúng: Hàm số \(y = {\log _{\frac{{2024}}{{2023}}}}x\) có tập xác định là \(\left( {0\,;\, + \infty } \right)\) nên có đồ thị nằm bên phải trục tung.
d) Sai: Vì \({\left( {\frac{{2023}}{{2024}}} \right)^x} > 0,\,\forall x \in \mathbb{R}\) nên đồ thị hàm số \(y = {\left( {\frac{{2023}}{{2024}}} \right)^x}\) không cắt trục tung.
Câu 2
Lời giải
Chọn B
Ta thấy đồ thị \(y = {x^c}\)đi xuống nên \(c < 0\), đồ thị \(y = {a^x}\)đi xuống nên \(0 < a < 1\), đồ thị \(y = {\log _b}x\) đi lên nên \(b > 1.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
