Cho hình chóp đều \[S.ABC\]có \[ABC\] là tam giác đều cạnh \[a\], cạnh bên \(SA = \frac{{a\sqrt {21} }}{6}\). Gọi \[G\] là trọng tâm của \(\Delta ABC\) và kẻ \(AM \bot BC\).
Quảng cáo
Trả lời:

Gọi \[G\]là trọng tâm của \(\Delta ABC\). Vì hình chóp \[S.ABC\] đều nên \(SG \bot \left( {ABC} \right)\).
Ta có: \[GM\] là hình chiếu của \[SM\] trên mặt phẳng \[\left( {ABC} \right)\] nên \(SM \bot BC\).
Lại có:\[\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\\left( {SBC} \right) \supset SM \bot BC\\\left( {ABC} \right) \supset AM \bot BC\end{array} \right. \Rightarrow \widehat {\left( {\left( {SBC} \right)\left( {ABC} \right)} \right)} = \widehat {SMA} = \widehat {SMG}\].
Xét \[\Delta ABC\]đều có \[AM\] là đường trung tuyến, \[G\] là trọng tâm nên \[GM = \frac{1}{3}AM = \frac{1}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6}\]
Tam giác \[SMB\] vuông tại \[M\] nên:
\[S{M^2} = S{B^2} - B{M^2} = {\left( {\frac{{a\sqrt {21} }}{6}} \right)^2} - {\left( {\frac{a}{2}} \right)^2} = \frac{{{a^2}}}{3} \Rightarrow SM = \frac{a}{{\sqrt 3 }}\].
Tam giác \[SGM\] vuông tại G nên: \[\cos \widehat {SMG} = \frac{{GM}}{{SM}} = \frac{{a\sqrt 3 }}{6}.\frac{{\sqrt 3 }}{a} = \frac{1}{2} \Rightarrow \widehat {SMG} = {60^ \circ }\].
a) Đúng: Đường thẳng \(SG\) vuông góc với mặt phẳng \(\left( {ABC} \right)\).
b) Đúng: Góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) là góc \[\widehat {SMA}\].
c) Sai: Đoạn thẳng \(SM\) có độ dài bằng \(\frac{a}{{\sqrt 3 }}\)
d) Đúng: Giá trị góc \(\alpha \) giữa hai mặt phẳng \[\left( {SBC} \right)\] và \[\left( {ABC} \right)\] bằng \({60^0}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Ta thấy đồ thị \(y = {x^c}\)đi xuống nên \(c < 0\), đồ thị \(y = {a^x}\)đi xuống nên \(0 < a < 1\), đồ thị \(y = {\log _b}x\) đi lên nên \(b > 1.\)
Câu 2
Lời giải

Đặt .
Gọi \(M\) là trung điểm của \(BC\) suy ra \(BC \bot A'M\) (Do tam giác đều). Khi đó ta có:
\[\left\{ \begin{array}{l}BC \bot A'M\\BC \bot AA'\end{array} \right. \Rightarrow BC \bot AM\].
Vậy \[\left( {\left( {A'BC} \right)\,;\,\left( {ABC} \right)} \right) = \left( {A'M\,;\,AM} \right) = \widehat {A'MA} = {30^{\rm{o}}} \Rightarrow AA' = A'M.\sin 30^\circ = \sqrt 3 .\frac{1}{2} = \frac{{\sqrt 3 }}{2}\].
Áp dụng công thức: .
Suy ra thể tích của lăng trụ là: .
a) Sai: Độ dài cạnh \(BC\) bằng \(2\).
b) Đúng: Hai đường thẳng \(BC\) và\(AM\) vuông góc với nhau.
c) Sai: Góc tạo bởi hai mặt phẳng \[\left( {A'BC} \right)\] và \[\left( {ABC} \right)\] bằng \({30^0}\)
d) Đúng: Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng \(\frac{{3\sqrt 3 }}{4}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
