Cho hình chóp đều \[S.ABC\]có \[ABC\] là tam giác đều cạnh \[a\], cạnh bên \(SA = \frac{{a\sqrt {21} }}{6}\). Gọi \[G\] là trọng tâm của \(\Delta ABC\) và kẻ \(AM \bot BC\).
Quảng cáo
Trả lời:

Gọi \[G\]là trọng tâm của \(\Delta ABC\). Vì hình chóp \[S.ABC\] đều nên \(SG \bot \left( {ABC} \right)\).
Ta có: \[GM\] là hình chiếu của \[SM\] trên mặt phẳng \[\left( {ABC} \right)\] nên \(SM \bot BC\).
Lại có:\[\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\\left( {SBC} \right) \supset SM \bot BC\\\left( {ABC} \right) \supset AM \bot BC\end{array} \right. \Rightarrow \widehat {\left( {\left( {SBC} \right)\left( {ABC} \right)} \right)} = \widehat {SMA} = \widehat {SMG}\].
Xét \[\Delta ABC\]đều có \[AM\] là đường trung tuyến, \[G\] là trọng tâm nên \[GM = \frac{1}{3}AM = \frac{1}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6}\]
Tam giác \[SMB\] vuông tại \[M\] nên:
\[S{M^2} = S{B^2} - B{M^2} = {\left( {\frac{{a\sqrt {21} }}{6}} \right)^2} - {\left( {\frac{a}{2}} \right)^2} = \frac{{{a^2}}}{3} \Rightarrow SM = \frac{a}{{\sqrt 3 }}\].
Tam giác \[SGM\] vuông tại G nên: \[\cos \widehat {SMG} = \frac{{GM}}{{SM}} = \frac{{a\sqrt 3 }}{6}.\frac{{\sqrt 3 }}{a} = \frac{1}{2} \Rightarrow \widehat {SMG} = {60^ \circ }\].
a) Đúng: Đường thẳng \(SG\) vuông góc với mặt phẳng \(\left( {ABC} \right)\).
b) Đúng: Góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) là góc \[\widehat {SMA}\].
c) Sai: Đoạn thẳng \(SM\) có độ dài bằng \(\frac{a}{{\sqrt 3 }}\)
d) Đúng: Giá trị góc \(\alpha \) giữa hai mặt phẳng \[\left( {SBC} \right)\] và \[\left( {ABC} \right)\] bằng \({60^0}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lãi suất năm là 8% nên lãi suất kì hạn 6 tháng sẽ là \(r = 4\% = 0,04\). Thay \(P = 100;r = 0,04;A = 120\) vào công thức \(A = P{\left( {1 + r} \right)^t}\), ta được: \(120 = 100{\left( {1 + 0,04} \right)^t} \Rightarrow 1,2 = 1,{04^t} \Rightarrow t = {\log _{1,04}}1,2 \approx 4,65\).
Vậy sau 5 kì gửi tiết kiệm kì hạn 6 tháng, tức sau 30 tháng, người đó sẽ nhận được ít nhất 120 triệu đồng.
Lời giải
Gọi \[H\] là trọng tâm tam giác đều \[ABC\]. Vì \[A'\] cách đều \[A,B,C\] nên hình chiếu vuông góc của đỉnh \[A'\] là \[H\]cũng cách đều \[A,B,C\]. Khi đó khoảng cách giữa hai đáy chính là \[A'H.\]

Xét tam giác \[AA'H\] có: \[\left\{ \begin{array}{l}H = {90^0}\\AH = \frac{2}{3}AM = \frac{2}{3}.\frac{{\sqrt 3 }}{2} = \frac{{\sqrt 3 }}{3}\\\left( {\widehat {AA',\left( {ABC} \right)}} \right) = \widehat {A'AH} = {60^0}\end{array} \right. \Rightarrow A'H = AH.\tan {60^0} = \frac{{\sqrt 3 }}{3}.\sqrt 3 = 1.\]
Vậy khoảng cách giữa hai đáy của hình lăng trụ là \[A'H = 1\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.