Câu hỏi:

15/12/2025 20 Lưu

Một người gửi tiết kiệm 100 triệu đồng vào ngân hàng theo thể thức lãi kép kì hạn 6 tháng với lãi suất 8% một năm. Giả sử lãi suất không thay đổi. Hỏi sau bao nhiêu tháng người đó nhận được ít nhất 120 triệu đồng?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lãi suất năm là 8% nên lãi suất kì hạn 6 tháng sẽ là \(r = 4\%  = 0,04\). Thay \(P = 100;r = 0,04;A = 120\) vào công thức \(A = P{\left( {1 + r} \right)^t}\), ta được: \(120 = 100{\left( {1 + 0,04} \right)^t} \Rightarrow 1,2 = 1,{04^t} \Rightarrow t = {\log _{1,04}}1,2 \approx 4,65\).

Vậy sau 5 kì gửi tiết kiệm kì hạn 6 tháng, tức sau 30 tháng, người đó sẽ nhận được ít nhất 120 triệu đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \[H\] là trọng tâm tam giác đều \[ABC\]. Vì \[A'\] cách đều \[A,B,C\] nên hình chiếu vuông góc của đỉnh \[A'\] là \[H\]cũng cách đều \[A,B,C\]. Khi đó khoảng cách giữa hai đáy chính là \[A'H.\]

Cho hình lăng trụ tam giác \[A (ảnh 1)

Xét tam giác \[AA'H\] có: \[\left\{ \begin{array}{l}H = {90^0}\\AH = \frac{2}{3}AM = \frac{2}{3}.\frac{{\sqrt 3 }}{2} = \frac{{\sqrt 3 }}{3}\\\left( {\widehat {AA',\left( {ABC} \right)}} \right) = \widehat {A'AH} = {60^0}\end{array} \right. \Rightarrow A'H = AH.\tan {60^0} = \frac{{\sqrt 3 }}{3}.\sqrt 3  = 1.\]

Vậy khoảng cách giữa hai đáy của hình lăng trụ là \[A'H = 1\].

Câu 2

a) Độ dài cạnh \(BC\) bằng \(\sqrt 2 \).
Đúng
Sai
b) Hai đường thẳng \(BC\)\(AM\) vuông góc với nhau.
Đúng
Sai
c) Góc tạo bởi hai mặt phẳng \[\left( {A'BC} \right)\]\[\left( {ABC} \right)\] bằng \({45^0}\)
Đúng
Sai
d) Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng \(\frac{{3\sqrt 3 }}{4}\).
Đúng
Sai

Lời giải

d) Đúng: Thể tích (ảnh 1)

Đặt BC=xSA'BC=x234=3x=2.

Gọi \(M\) là trung điểm của \(BC\) suy ra \(BC \bot A'M\) (Do tam giác đều). Khi đó ta có:

\[\left\{ \begin{array}{l}BC \bot A'M\\BC \bot AA'\end{array} \right. \Rightarrow BC \bot AM\].

Vậy \[\left( {\left( {A'BC} \right)\,;\,\left( {ABC} \right)} \right) = \left( {A'M\,;\,AM} \right) = \widehat {A'MA} = {30^{\rm{o}}} \Rightarrow AA' = A'M.\sin 30^\circ  = \sqrt 3 .\frac{1}{2} = \frac{{\sqrt 3 }}{2}\].

Áp dụng công thức: S'=S.cosφSABC=SA'BC.cos30o=32.

Suy ra thể tích của lăng trụ là: VABC.A'B'C'=AA'.SABC=32.32=334.

a) Sai: Độ dài cạnh \(BC\) bằng \(2\).

b) Đúng: Hai đường thẳng \(BC\) và\(AM\) vuông góc với nhau.

c) Sai: Góc tạo bởi hai mặt phẳng \[\left( {A'BC} \right)\] và \[\left( {ABC} \right)\] bằng \({30^0}\)

d) Đúng: Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng \(\frac{{3\sqrt 3 }}{4}\).

Câu 3

A. \(\frac{{ - 1}}{3}\).                               
B. \(\frac{1}{3}\).          
C. \(3\).                    
D. \( - 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Số tiền (cả vốn lẫn lãi) cô Lan thu được sau 5 năm nếu được tính lãi kép theo thể thức tính lãi hàng quý là khoảng \(161,623\) triệu đồng.
Đúng
Sai
b) Số tiền (cả vốn lẫn lãi) cô Lan thu được sau 5 năm nếu được tính lãi kép theo thể thức tính lãi hàng tháng là khoảng \(161,862{\rm{\;}}\) triệu đồng.
Đúng
Sai
c) Số tiền (cả vốn lẫn lãi) cô Lan thu được sau 5 năm nếu được tính lãi kép theo thể thức tính lãi liên tục là khoảng \(161,483\) triệu đồng.
Đúng
Sai
d) Thời gian cần thiết để cô Lan thu được số tiền cả vốn lẫn lãi là 180 triệu đồng nếu gửi theo thể thức lãi lép liên tục khoảng 13 năm.(Kết quả được tính theo đơn vị triệu đồng và làm tròn đến chữ số thập phân thứ ba).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP