Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình vuông tâm \(O\) cạnh \(a\). Tính khoảng cách giữa \(SC\) và \(AB\) biết rằng \(SO = a\) và vuông góc với mặt đáy của hình chóp.
A. \(a\).
Quảng cáo
Trả lời:
Từ giả thiết suy ra hình chóp \(S.ABCD\)là hình chóp tứ giác đều.
Ta có \(AB{\rm{//}}CD\)\( \Rightarrow AB{\rm{//}}\left( {SCD} \right)\) nên \(d\left( {SC;AB} \right)\)\( = d\left( {AB;{\mathop{\rm mp}\nolimits} \left( {SCD} \right)} \right)\)\( = d\left( {A;{\mathop{\rm mp}\nolimits} \left( {SCD} \right)} \right)\).
Mặt khác \(O\) là trung điểm \(AC\) nên \(d\left( {A;{\mathop{\rm mp}\nolimits} \left( {SCD} \right)} \right)\)\( = 2d\left( {O;{\mathop{\rm mp}\nolimits} \left( {SCD} \right)} \right)\).
Như vậy \(d\left( {SC;AB} \right)\)\( = 2d\left( {O;{\mathop{\rm mp}\nolimits} \left( {SCD} \right)} \right)\).
Gọi \(M\) là trung điểm \(CD\), ta có \(OM \bot CD\) và \(OM = \frac{a}{2}\). Kẻ \(OH \bot SM\), với \(H \in SM\), thì \(OH \bot {\mathop{\rm mp}\nolimits} \left( {SCD} \right)\).
Xét tam giác \(SOM\) vuông tại \[O\], ta có \(\frac{1}{{O{H^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{M^2}}}\)\( = \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {\frac{a}{2}} \right)}^2}}} = \frac{5}{{{a^2}}}\).
Từ đó \(OH = \frac{a}{{\sqrt 5 }}\).
Vậy \(d\left( {SC;AB} \right)\)\( = 2d\left( {O;{\mathop{\rm mp}\nolimits} \left( {SCD} \right)} \right)\)\( = 2.OH\)\( = \frac{{2a}}{{\sqrt 5 }}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(90^\circ \).
Lời giải
Ta có \(B'C\;{\rm{//}}\;A'D\)\( \Rightarrow \widehat {\left( {A'B;B'C} \right)} = \widehat {\left( {A'B;A'D} \right)}\)\( = \widehat {DA'B}\).
Xét \(\Delta DA'B\) có \(A'D = A'B\)\( = BD\) nên \(\Delta DA'B\) là tam giác đều.
Vậy \(\widehat {DA'B}\)\( = 60^\circ \).
Câu 2
a) \[f'\left( x \right) = {x^2} + x - 2\]
b) \[f'\left( x \right) = 0\] có 1 nghiệm
c) \[f'\left( x \right) = - 2\] có 2 nghiệm
Lời giải
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
a) Ta có \[f'\left( x \right) = \left( {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} - 2x} \right) = {x^2} + x - 2\]
b) \[f'\left( x \right) = 0 \Leftrightarrow {x^2} + x - 2 = 0 \Leftrightarrow x = 1 \vee x = - 2\]
c) \[f'\left( x \right) = - 2 \Leftrightarrow {x^2} + x - 2 = - 2 \Leftrightarrow {x^2} + x = 0 \Leftrightarrow x = 0 \vee x = - 1\]
d) \[f'\left( x \right) = 10 \Leftrightarrow {x^2} + x - 2 = 10 \Leftrightarrow {x^2} + x - 12 = 0 \Leftrightarrow x = 3 \vee x = - 4\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(P(A) - P(B)\).
B. \(P(A) + P(B)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(V = \frac{2}{3}{a^3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.